Abstract:
Methods and apparatus are provided for determining weight percent of solids in a suspension using Raman spectroscopy. The methods can be utilized to acquire Raman spectral data from the suspension and to determine weight percent of solids in a process being carried out, for example, in a vessel, without the need to remove samples for analysis. The weight percent of the solids can be determined with a desired accuracy in a relatively short time, typically 10 minutes or less. The acquired Raman spectral data may be processed by chemometric software using, for example, a partial least squares algorithm and data pretreatment to provide a predicted value of weight percent solids. In some embodiments, the invention is used to determine the weight percent of microparticles of a diketopiperazine in an aqueous solution.
Abstract:
Some embodiments describe a computer-implemented method for calibrating a fluorescent dye. The method can comprise imaging a sample holder, loaded into an instrument, at more than one channel. The sample holder can comprise a plurality of reaction sites and more than one dye type, with each dye occupying more than one reaction site. The method can further comprise identifying a peak channel for each dye on the sample holder, normalizing each channel to the peak channel for each dye, and producing a dye matrix that can comprise a set of dye reference values.
Abstract:
To allow online monitoring of the overall concentration of oxidizing substances in electrolyzed sulfuric acid, for example, in a cleaning system, absorbance data having undergone baseline correction in relation to the overall concentration of oxidizing substances by using a standard sample liquid in the form of an electrolyzed sulfuric acid preparation liquid having the same sulfuric acid concentration as the sulfuric acid concentration of the electrolyzed sulfuric acid is prepared, and absorbance is measured over wavelengths ranging from 190 to 290 nm by using a sample liquid in the form of electrolyzed sulfuric acid having a sulfuric acid concentration ranging from 60 to 97% by mass and a liquid temperature ranging from 20 to 70° C. to measure the overall concentration of oxidizing substances in the electrolyzed sulfuric acid on the basis of the data. The overall concentration of oxidizing substances in the electrolyzed sulfuric acid can thus be immediately measured.
Abstract:
A calibration device is described for calibrating a scatterometer, which is designed in particular for measuring a particle concentration in exhaust gases of motor vehicles. The calibration device has at least one scattering body which emits scattered light having a defined intensity and distribution when irradiated with a light beam, the scattering body having an emission surface for the scattered light, to which is assigned at least one light sensor for detecting the scattered light exiting the emission surface. A screening body having at least one screen opening through which the scattered light exits in the direction of the at least one light sensor is assigned to the emission surface of the scattering body.
Abstract:
The present invention relates to a method for characterizing a sample-product X by spectral analysis by means of a novel spectrometer II using information acquired by means of a first spectrometer I.
Abstract:
An aquatic environment water parameter testing system and related methods and chemical indicator elements. The aquatic environment water parameter testing system includes an electronics portion having an optical reader element and a sample chamber portion. Conductivity and/or temperature may be utilized to calibrate readings by the optical reader element. A system may optionally have a sample chamber portion having a chemical indicator element which may be removably connected. A chemical indicator element may include an information storage and communication element used, in part, to provide identification of a chemical indicator of the chemical indicator element.
Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
Described herein is a method, system and computer program for analyzing a colorimetric assay that includes obtaining an image of the assay, optionally correcting for ambient lighting conditions in the image, converting the intensity data for at least one of the red channel, the green channel, or the blue channel to a first data point, recalling a predetermined standardized curve, comparing the first data point with the standardized curve, and identifying the value for the assay parameter from the standardized curve.
Abstract:
A system or method for analyzing a sample include an input light source, a double subtractive monochromator positioned to receive light from the input light source and to sequentially illuminate the sample with each of a plurality of wavelengths, a multi-channel fluorescence detector positioned to receive and substantially simultaneously detect multiple wavelengths of light emitted by the sample for each of the plurality of excitation wavelengths, an absorption detector positioned to receive and detect light passing through the sample, and a computer in communication with the monochromator, the fluorescence detector, and the absorption detector, the computer controlling the monochromator to sequentially illuminate the sample with each of the plurality of wavelengths while measuring absorption and fluorescence of the sample based on signals received from the fluorescence and absorption detectors.
Abstract:
Provided herein, are droplet mixture compositions and systems and methods for forming mixtures of droplets. The system may comprise two or more droplet generation units. Each unit may include at least one first input well, a second input well, and an output well connected to the first and second input wells by channels that form a droplet generator. The combined droplet populations can be mixed, heated, and collected for multiple uses, such as for use as calibration standards for instrument testing and analysis.