Abstract:
A stretchable device for transmitting signal between end points, such as a sensor and electronic unit, includes a conductive element, which is coupled with a supporting structure by introducing the conductive element successively through the thickness of the supporting structure to the first and second side of the supporting structure, thereby providing a corrugated structure for the conductive element, which is configured to be straighten out at least partially during stretching the device in its longitudinal direction. The conductive element is coupled with the supporting structure between first and second outer layers thereby providing the stretchable device.
Abstract:
A wiring board includes a substrate having a laminated-inductor forming portion and including multiple first insulation layers and a second insulation layer formed on a first side of the first insulation layers such that the first insulation layers have the laminated-inductor forming portion, and a planar conductor formed on the second insulation layer of the substrate and formed to shield electromagnetic force generated from the laminated-inductor forming portion of the substrate. The laminated-inductor forming portion of the substrate has multiple inductor patterns formed on the first insulation layers and multiple via conductors connecting the inductor patterns through the first insulation layers, and the inductor patterns include an uppermost inductor pattern formed between the second insulation layer and the first insulation layers such that the uppermost inductor pattern has a distance of 100 μm or more from the planar conductor.
Abstract:
An electronic control device includes a substrate, component-mounted wires disposed on the substrate, electronic components mounted on the respective component-mounted wires, a common wire disposed on the substrate and coupled with each of the electronic components, and an interrupt wire coupled between one of the component-mounted wires and the common wire. The interrupt wire melts in accordance with heat generated by an overcurrent. The interrupt wire includes a first wire section and a second wire section shorter than the first wire section. The first wire section and the second wire section is coupled with each other at a predetermined angle that is determined so that one of the wire sections is coupled with the common wire and the other is coupled with the one of the component-mounted wires.
Abstract:
A chip-stack interposer structure including a passive device is described, including an interposing layer, a capacitor, a first contact and a second contact. The capacitor is embedded in or disposed on the interposing layer, including a first electrode, a second electrode and a dielectric layer between the first and the second electrodes. The first contact is connected with the first electrode. The second contact is connected with the second electrode. The first electrode and the second electrode are disposed at the same side of the interposing layer or at different sides of the interposing layer.
Abstract:
A first resin layer is provided with a step part formed in conformity with a shape of at least part of an electrically conductive pattern, and the first resin layer and a second resin layer closely adhere to each other in the step part.
Abstract:
A package comprises a body, and an electrically conductive pattern supported by said body. An interface portion is configured to receive a module to a removable attachment with the package. The electrically conductive pattern comprises, at least partly within said interface portion, a wireless coupling pattern that constitutes one half of a wireless coupling arrangement.
Abstract:
An article comprising a conductive film comprising conductive structures, and a first resistive element patterned into a first portion of the conductive film. In at least some cases, the conductive structures may comprise nanostructures, such as, for example, nanowires. Silver nanowires are exemplary conductive structures. In some useful applications, the first resistive element may be part of a circuit, such as, for example, a Wheatstone bridge.
Abstract:
A magnetic stripe reading device including a magnetic head assembly including a mounting element defining a circumferential anti-tampering enclosure and at least one information reading sensor having output contacts, a protective layer including at least one protective grid and at least one anti-tampering contact array including at least two electrical contacts, at least one resiliently deformable conductive element arranged to selectably provide a galvanic interconnection between the electrical contacts, a closure element fixed to the assembly in a secure orientation to displace the deformable conductive element into galvanic interconnection contact with the electrical contacts, whereby tampering with the closure element causes the deformable conductive element to break the galvanic interconnection contact and a flat cable coupled to the output contacts, to the protective layer and to the electrical contacts and carrying electrical signals useful for providing a tampering alarm indication when the electrical contacts are not in galvanic contact.
Abstract:
A method uses time-domain reflectometry to measure a signal reflection delay in a conductive trace formed on a specific passive printed circuit board, and uses the measured signal reflection delay as an index into a table storing a predetermined association between signal reflection delay and passive printed circuit board manufacturing information, wherein the table includes a plurality of predetermined signal reflection delay values, and wherein each of the predetermined signal reflection delay values is associated with unique passive printed circuit board manufacturing information. During manufacturing of the passive printed circuit board, a hole is drilled through the passive printed circuit board so that the hole intersects with the conductive trace and divides the conductive trace into a proximal segment extending from the connector to the hole and a distal segment that is electrically isolated from the proximal segment by the hole.
Abstract:
An interconnection device for elements to be interconnected such as electronic modules or circuits, comprises at least one transmission line coupled to a ground line, the two lines being produced on a face of a dielectric substrate, the interconnection being made substantially at the ends of the transmission line and of the ground line, wherein said interconnection device is flexible over at least a part of its length situated roughly between the elements to be interconnected.