Abstract:
Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
Abstract:
In one implementation, a method is provided for constructing an interface module which includes constructing a board having a signal via through the board, and having at least one ground via extending through the board. The method further includes back drilling the signal via to create a center conductor hole above a remaining portion of the signal via and back drilling a shield opening in the board and at least part way into the at least one ground via such that a height of the center conductor hole is reduced. The method further includes plating the shield opening and the center conductor hole, and back drilling to remove a portion of the plating to electrically isolate the plated shield opening and the plated center conductor hole.
Abstract:
Methods and apparatus are provided for securely and cost effectively attaching one or more shielded cables to a planar substrate. A cable assembly includes a printed circuit board (PCB) coupled to a distal end of the one or more shielded cables. Perpendicular alignment of the distal cable ends promotes a dense array that is achieved using angular mounting brackets for coupling cable shields to electrical contacts on an engagement surface of the PCB. Mounting brackets are attached between the cable shield and shield contacts using electrically conductive attachment techniques including soldering and laser welding. The PCB also includes one or more signal contacts for each cable. Distal ends of the internal conductors are each bent about 90 degrees from the vertical cable axis to align with the horizontal engagement surface. Internal conductors are surface mounted to their respective signal contact using one or more of soldering and laser welding.
Abstract:
The invention provides a printed circuit board including a first surface, a second surface which is a rear surface to the first surface, a connector installed on the first surface, and, formed between the first surface and the second surface, one of a through hole piercing the printed circuit board and a recess formed in an edge section of the printed circuit board; a cable including a first terminal that is removably fitted to the connector and a connecting wire portion located between the first terminal and a second terminal, the connecting wire portion extending from the first surface to the second surface of the printed circuit board through the one of the through hole and the recess when the first terminal is in a state of being fitted to the connector; and a casing for containing the printed circuit board and the cable.
Abstract:
The LED system has a set consisting of multiple LED lamps and an integrally formed electrical connecting member common to the LED lamps, wherein the electrical connecting member has multiple connection points for contacting a respective LED lamp.
Abstract:
Wiring system which comprises: a flexible printed circuit board (1) with a surface (2) in turn comprising one or more electrical circuits formed by conductive strips (4) and a plurality of electronic components (5) connected to said conductive strips (4) and with at least one extension or branch (6) extending directly from said surface (2) and also comprising conductive strips (7); characterized in that it further comprised: at least one flexible flat cable (8) joined to said at least one extension or branch (6), such that an electrical connection is formed between said flexible flat cable (8) and said extension or branch (6). A vehicle door which internally comprises this wiring system.
Abstract:
The present invention relates to a coaxial cable structure for connecting to a printed circuit board including: a coaxial cable part having a plurality of signal lines, an inner insulator, a shield wire covered along the outer periphery of the inner insulator, and an outer insulator covered along the outer periphery of the shield wire; a pattern part formed on one surface of the printed circuit board, and serving as a conductor adapted to abut against the signal lines exposed to the outside of the coaxial cable part, the pattern part having the corresponding the plurality of signal lines; number of signal patterns to and a ground pattern adapted and a soldering part adapted to directly solder each the coaxial cable part portions thereof to the pattern part of signal line and exposed to the each shield wire of outside at the end the printed circuit board.
Abstract:
An assembly has a conductive trace on a substrate and at least one conductor electrically coupled to the trace. First and second gaps arranged such that one gap is on either side the trace, allowing control of electrical characteristics of a signal path formed of the conductor and the trace.
Abstract:
A cable routing device for installation on a post of a computing system board, includes a tube shaped main body having a hollow inner cavity. The main body includes a lower generally cylindrical portion having a first inner diameter sized to achieve a clearance fit over the post, and a flexible upper portion having a general shape of a truncated cone when in an unflexed condition, the flexible upper portion having slits arranged approximately opposite to each other thereby defining two sides to the flexible upper portion, the flexible upper portion having a second inner diameter proximate to a top of the flexible upper portion. When the flexible upper portion is in the unflexed condition, the second inner diameter is smaller than the first inner diameter and smaller than an effective diameter of the post, and when the two sides are flexed in an outward direction the device achieves a clearance fit over the post. The device further includes a cable clip molded to the main body, and configured to retain a plurality of cables.
Abstract:
At least one flexible appliance (120) and related method (300) for orthogonal, non-planar interconnections of at least a first electronic interface (115) disposed on a substrate (110) to an associated second electronic interface (161) positioned beneath the substrate (110). The flexible appliance (120) is comprised of a planar body (121) having at least one electrical connector (122) extending from and orthogonally oriented relative to the planar body (121). In one aspect of the invention, the electrical connector (122) is four electrical connectors (122). There is at least one aperture (112) formed in the substrate (110) for allowing the first electronic interface (115) to be electrically interconnected to the associated second electronic interface (161). The flexible appliance (120) is positioned on the substrate (110) by automated means. Contacts pads (123, 124) on the resilient connector (122) are electrically connected to the second electronic interface (161) and the first electronic interface (115) by automated means such as soldering, thermo sonic bonding, or gap welding.