Abstract:
Methods of fabricating electronic circuits and electronic packages are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board. In certain embodiments, one or more of the tamper-respondent layers are divided into multiple, separate tamper-respondent circuit zones, with the tamper-respondent layers, including the circuit zones, being electrically connected to monitor circuitry within the secure volume.
Abstract:
The electronic terminal equipment comprising an electronic substrate on which a heat-generating electronic component is mounted and an electromagnetic shield member attached in proximity to the heat-generating electronic component, the electronic substrate being filled with a cured product of a thermally-conductive curable liquid resin between the electromagnetic shield member and the electronic substrate, and a thermally-conductive film being disposed in contact with an upper surface of the electromagnetic shield member or facing the upper surface thereof so as to diffuse heat that came up through the cured thermally-conductive curable liquid resin.
Abstract:
A method for producing a base substrate includes preparing an insulator substrate; forming a first film containing, as a main component, a metal that contains at least one of tungsten and molybdenum and has a melting point of 1000° C. or higher on the insulator substrate; forming a second film containing nickel as a main component and also containing boron on the first film; forming a first metal layer by performing a sintering treatment of the first film and the second film; and forming a second metal layer containing palladium as a main component on the first metal layer.
Abstract:
An electronic device is disclosed. An electronic device comprises a first magnetic sheet, a coil, and a board. The first magnetic sheet has a first surface and a second surface opposite to the first surface. The coil is located on the first surface. The board has a third surface facing the second surface and has a first component on the third surface. The first magnetic sheet has a through hole that penetrates therethrough from the first surface to the second surface in a region of the first surface, the region being surrounded by the coil. The first component has a first portion facing the through hole.
Abstract:
A heatsink to be mounted on a circuit board including a plurality of electronic parts is constituted of a conductive and rectangular plate-shaped member, and mounted on the circuit board such that a main surface of the heatsink blocks an airflow generated on the circuit board, the heatsink being electrically grounded. The main surface includes a contacting portion disposed in contact with the circuit board and an isolated portion separated from the circuit board, the isolated portion being cut into two parts along a straight line extending in a direction away from the circuit board. The two parts are each bent such that an end portion on a side of the straight line is oriented to a downstream side of the airflow, so that an opening is defined between the respective end portions of the two parts on the side of the straight line.
Abstract:
A circuit board assembly includes a first shield positioned over a top surface of a printed circuit board and a second shield positioned over a bottom surface. The first and second shields include conductive tabs which are coupled to a first side surface of the circuit board, wherein the tabs of the first shield are generally interposed or staggered with the tabs of the second shield.
Abstract:
In exemplary embodiments, a circuit assembly may be provided on and/or supported by an electrically conductive structure, such as a board level shield, a midplate, a bracket, a precision metal part, etc. For example, a circuit assembly may be provided on and/or supported by an outer top surface of a board level shield. In an exemplary embodiment, an assembly generally includes an electrically conductive structure configured for a first functionality in the electronic device. An electrically nonconductive layer is on at least part of the electrically conductive structure. First electrical component(s) are at least partly on the electrically nonconductive layer and configured to define at least a portion of a circuit assembly for electrical connection with one or more second electrical components of the electronic device. The electrically conductive structure may thus be configured for a second functionality in the electronic device.
Abstract:
An electronic device may include a noise shielding device that may include: a substrate including at least one heat generating component; a metallic shield cover that is disposed on the substrate to enclose the at least one heat generating component; a metal housing disposed around the shield cover; and a heat transfer member that is configured to transfer heat emitted from the heat generating component through an opening formed at a position corresponding to the heat generating component to the metal housing, wherein the metallic shield cover includes a plurality of tension fingers that protrude at predetermined intervals and contact a bottom face of the metal housing, and noise emitted from the heat generating component is shielded by a shielding region that is formed by the tension fingers and the metal housing.
Abstract:
A radio IC device includes an electromagnetic coupling module includes a radio IC chip arranged to process transmitted and received signals and a feed circuit board including an inductance element. The feed circuit board includes an external electrode electromagnetically coupled to the feed circuit, and the external electrode is electrically connected to a shielding case or a wiring cable. The shielding case or the wiring cable functions as a radiation plate. The radio IC chip is operated by a signal received by the shielding case or the wiring, and the answer signal from the radio IC chip is radiated from the shielding case or the wiring cable to the outside. A metal component functions as the radiation plate, and the metal component may be a ground electrode disposed on the printed wiring board.
Abstract:
An electronic device is provided that includes a PCB including a first surface, a second surface, and a side surface; an electronic component arranged on the first surface, adjacent to a portion of the side surface; a shield structure including a cap that covers the electronic component and a sidewall extending from a periphery of the cap toward the first surface of the PCB, wherein the sidewall extends in a first direction that is non-parallel to the first surface of the PCB; a first conductive structure that is formed on a portion of the side surface of the PCB; and a second conductive structure that is formed on a portion of the first surface to be connected to the first conductive structure. The sidewall contacts with the first surface of the PCB and overlaps with the second conductive structure, when viewed from above the first surface of the PCB.