Abstract:
Provided are a method for producing a composite oxide and the composite oxide, which finds use as an easy-to-handle catalyst material having a high reforming rate of hydrocarbon to hydrogen even when oxidized. The method includes the steps of: (a) preparing a Ce aqueous solution not less than 80 mol % of which Ce ions are tetravalent, and a Zr aqueous solution containing Zr ions; (b1) mixing the Zr aqueous solution and a portion of the Ce aqueous solution to prepare a mixed aqueous solution (X1); (c1) hydrothermally processing solution (X1); (b2) adding the remainder of the Ce aqueous solution prepared in step (a) to a colloidal solution (Y1) of a composite salt obtained from step (c1) to prepare a colloidal solution (Y2) of a composite salt; (c2) hydrothermally processing solution (Y2) obtained from step (b2); (d) mixing a colloidal solution (Y3) of a composite salt obtained from step (c2) with an alkaline solution and a surfactant to prepare a precipitate; and (e) calcining the precipitate.
Abstract:
An exhaust gas purify catalyst includes a substrate (1), an oxidation catalyst layer (2) formed on the substrate (1) and containing zeolite and at least one catalytic metal, an LNT layer (3) formed on the oxidation catalyst layer (2) and containing an NOx storage material and at least one catalytic metal, and an NOx reduction layer (4) formed on the LNT layer (3) and containing Rh acting as a catalytic metal and at least one of alumina or zirconia, wherein the NOx reduction layer (4) has a larger content of Rh than that in each of the oxidation catalyst layer (2) and the LNT layer (3).
Abstract:
The invention provides a chlorine production catalyst that shows excellent reaction activity in the oxidation reaction of hydrogen chloride with oxygen into chlorine, is inexpensive and can be supplied stably, and is suited for use in a fluidized-bed reactor. The invention also provides a chlorine production process using the catalyst. The chlorine production catalyst of the invention includes spherical particles containing copper element (A), an alkali metal element (B) and a lanthanoid element (C) and having an average sphericity of not less than 0.80. The lanthanoid element (C) has a bond dissociation energy with oxygen at 298 K of 100 to 185 kcal/mol. The content of the copper element (A) in the catalyst is 0.3 wt % to 4.5 wt %.
Abstract:
The present invention provides a non-PGM catalyst for burning carbon soot without using a noble metal, the non-PGM catalyst comprising: a cerium-praseodymium complex oxide and an iron oxide, the cerium-praseodymium complex oxide impregnated with silver (Ag). The cerium-praseodymium complex oxide illustratively consists of 60 to 95 wt % of cerium oxide and 5 to 40 wt % of praseodymium oxide, and silver (Ag) impregnated in the complex oxide is 1.5 to 3.0 parts by weight of the total weight of the complex oxide. The iron oxide may be an oxide in a form of particles separate from the cerium-praseodymium complex oxide in which silver is impregnated, and may be 0.5 to 2 parts by weight of the total weight of the cerium praseodymium complex oxide.
Abstract:
A process for manufacturing 1,3-propanediol by reacting glycerol with hydrogen in the presence of a supported catalyst, the supported catalyst comprising at least one iridium compound and at least one rhenium compound, both compounds being supported on a zeolite, wherein the zeolite exhibits an MFI, a MEL, a BEA, a MOR, a FAU, a FER, a MWW, a CHA, a LTA, a ATO or a AEL framework type, and wherein the said zeolite is at least partially in the hydrogen form.
Abstract:
An exhaust gas purifying catalyst having a high purifying ability even if noble metal is not used as an essential component, an exhaust gas purifying monolith catalyst, and a method for manufacturing an exhaust gas purifying catalyst, are provided. The exhaust gas purifying catalyst includes an oxide having an oxygen storage and release capacity, and an oxide represented by the following formula (1) supported on the oxide having the oxygen storage and release capacity, LaxM1−xM′O3−δ (1) (wherein La represents lanthanum, M represents at least one element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M′ represents at least one element selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) and manganese (Mn), δ represents an oxygen deficient amount, and x and δ fulfill conditions represented by 0
Abstract:
A method for producing ethylene oxide comprising: providing one or more feed components, wherein the one or more feed components contains at least ethylene obtained by dehydrating ethanol; contacting the one or more feed components with a desulfurization catalyst comprising a high surface area support and an amount of silver, wherein at least 20% of the silver is present as oxidized silver; and contacting the one or more feed components with a silver-containing epoxidation catalyst disposed inside an ethylene oxide reactor to form a reaction gas comprising ethylene oxide.
Abstract:
Disclosed herein is a catalyst for aqueous-phase reforming of biomass-derived polyols, which comprises platinum and copper as active metals and a mixture of magnesia and alumina as a support. The catalyst contains a small amount of platinum and, at the same time, has high hydrogen selectivity and low methane selectivity.
Abstract:
Provided is an exhaust-gas-purification catalyst carrier that contains a ceria-zirconia complex oxide having a pyrochlore phase and a novel exhaust-gas-purification catalyst carrier that exhibit excellent OSC performance at any temperature region of a low temperature (around 400° C.) and a high temperature (around 800° C.). Proposed is the exhaust-gas-purification catalyst carrier containing a ceria-zirconia complex oxide which has a pyrochlore phase and is 7.0 m2/g or more in specific surface area and in the range of 100 Å to 700 Å in crystallite size.
Abstract:
The present invention relates to a catalyst for preparation of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, in which the catalyst comprises calcined tin dioxide as a support and at least one halogen-containing ruthenium compound, and to the use thereof.