Abstract:
In apparatus for performing Surface Enhanced Raman Spectroscopy (SERS), rather than applying a sample to be analyzed to an SERS active substrate, the SERS active substrate is applied to the sample using an inkjet nozzle to apply a substance containing a colloidal metal, such as silver, to the sample. The prepared sample is then analyzed with a Raman spectrometer in a conventional fashion.
Abstract:
A probe of a Raman spectroscopy system has a wavelength and/or amplitude referencing system for determining a wavelength of the excitation signal. Preferably, this referencing system is near an output aperture, through which the excitation signal is transmitted to the sample. In this way, any birefringence or polarization dependent loss (PDL) that may be introduced by optical elements in the system can be compensated for since the wavelength reference system will detect the effect or impact of these elements.
Abstract:
A spectroscopic detector includes a tunable light source, such as a continuously tunable, optical parametric oscillator laser; means for measuring the emitted radiation at a plurality of emission wavelengths to obtain a plurality of spectral measurement data; and a processor for processing the spectral measurement data, where the processor includes a multispectral data processing algorithm or is configured for 1) combining the plurality of spectral measurement data into a composite spectrum, and 2) applying the algorithm to the composite spectrum. The spectra such as resonant and near-resonant Raman Spectra that are acquired are more complete and contain more information. A powerful multispectral analysis code such as IHPS, CHOMPS, or ENN analyzes the acquired data points, examining details of the spectra that could not be handled by traditional methods.
Abstract:
A system and method for determining at least one geometric property of a particle in a sample. A sample is irradiated to thereby generate Raman scattered photons. These photons are collected to generate a Raman chemical image. A first threshold is applied wherein the first threshold is such that all particles in the sample are detected. A particle in the sample is selected and a second threshold is applied so that at least one geometric property of the selected particle can be determined. At least one spectrum representative of the selected particle is analyzed to determine whether or not it is a particle of interest. The step of determining a second threshold may be iterative and automated via software so that candidate second thresholds are applied until a satisfactory result is achieved.
Abstract:
An optical system and apparatus for the diagnosis of a biological sample is disclosed. An embodiment of the apparatus includes an optical probe, a probe head distally connectable to the optical probe, the optical probe further comprising at least one optical clement for applying an electromagnetic radiation of a first wavelength to the biological sample, and one or more collection elements positioned proximate the at least one optical element; and an analyzer for analyzing a signal received from the biological sample by the one or more collection elements.
Abstract:
An spectrometer including Raman and LIBS spectroscopy capabilities is disclosed. The spectrometer includes a laser source configurable to produce a lased light directable towards a target substance, the laser source having a single wavelength and having sufficient power to cause a portion of the target to emit Raman scattering and sufficient to ablate a portion of the target substance to produce a plasma plume. A separate remote light collector is optically configurable to collect light emitted from the portion of the target emitting Raman scattering and from the portion of the target producing the plasma plume. A filter is optically coupled to the remote light collector to remove reflected light and Rayleigh-scattered light, and a spectroscope is optically coupled to the filter and configured to separate the collected and filtered light into a frequency spectrum comprising a Raman spectrum and a laser-induced breakdown spectrum. Finally, an electronic light sensor is used to record the frequency spectrum.
Abstract:
A method is disclosed for providing quality assurance in an industrial process. The method includes obtaining a manufacturing material from the industrial process, allowing the manufacturing material to contact with a nano-scale surface, which allows the harmful substance to adsorb to the nano-scale surface. The method also includes obtaining a Raman spectrum from the manufacturing material and the nano-scale surface using a spectrometer, searching for, using a spectral analyzer, a spectral signature of a harmful substance in a predetermined spectral region in the Raman spectrum to determine the existence of the harmful substance in the manufacturing material, determining the concentration of the manufacturing material if the spectral signature is found in the Raman spectrum, and rejecting the manufacturing material from the industrial process if the concentration of the manufacturing material is determined to be above a predetermined tolerance level.
Abstract:
The invention provides a technique for increasing the illumination intensity of probe light in a diffusely scattering sample without increasing the power of the probe beam. Generally, an optical filter is used which permits a collimated probe beam of light to pass through to the sample, but which reflects back towards the sample much of the backscattered scattered probe light emerging at a wider range of angles. In particular embodiments a collimated laser beam is delivered to the sample through a multi-layer dielectric filter covering a portion of the sample. The filter is transmissive to the laser light at normal incidence, but reflective at shallower angles of incidence characteristic of the backscattered light.
Abstract:
Certain examples described herein are directed to optical devices and systems that include first and second optical elements. In some examples, the first optical element may be configured to pass light received from an excitation source, and the second optical element may be optically coupled to the first optical element and may be configured to reflect incident light from the first optical element back to the first optical element and configured to pass the light reflected from the first optical element. Methods using the devices and systems are also described.
Abstract:
Certain examples described herein are directed to optical devices and systems for use in spectroscopy. In particular, certain embodiments described herein are directed to devices and methods that may separate excitation light and Raman optical pathways, prior to sample irradiation, so that, if desired, the excitation light and the Raman scattered radiation may be independently manipulated.