Abstract:
A bodily fluid analyzer including a test strip holder comprising a base and a snap-on cover which completely enclose the test strip except for a sample port in the cover and a sensor port in the base. The test strip is compressed between the base and cover in a sample container having a well-defined sample volume. The test strip comprises a woven dispersement layer, a depth filter containing a reagent, an asymmetrical membrane containing additional reagent, and a colorimetric detection membrane in a vertical stack. The red blood cells are removed from the colorimetric detection area by slowing their vertical movement and stopping flow when the detection membrane is saturated. A minimum value of the reflectance in a color range is used to determine a characteristic of the bodily fluid.
Abstract:
The present invention is directed to methods and apparatus for pest management using remote sensing technology. One aspect of the present invention relates to a method for detecting plant-parasitic nematodes using hyperspectral reflectance data. Another aspect of the present invention relates to a device for determining the population of reniform nematode in a target. The further aspect of the present invention relates to a method for managing nematode population with variable rate applications of nematicides.
Abstract:
The disclosure relates to a method and apparatus for a compact birefringent interference imaging spectrometer. More specifically, the disclosure relates to a portable system for obtaining a spectrum of a sample. The portable system may include a first photon emission source for illuminating the sample with a first plurality of photons to thereby produce photons scattered by the sample; an optical lens for collecting the scattered photons; a filter for receiving the collected scattered photons and providing therefrom filtered photons; a first photon detector for receiving the filtered photons and obtaining therefrom a spectrum of the sample; and a rejection filter for blocking the photons from said first photon emission source from entering said first photon detector. The disclosure additionally relates to methods of using such portable systems.
Abstract:
Crime scene lighting devices are used in forensic criminology for illumination and investigation at crime scenes using fluorescence excitation. High radiation powers are required both for white light in the so-called general search and for the criminologically relevant UVA-blue-green range. Moreover, it should be possible for the crime scene investigator to use the forensic lighting device portably and independent from the public power supply. The present disclosure relates to a suitable crime scene light device with a mercury ultra high pressure lamp as the light source, a light guide and terminals for operating the lamp selectively with an accumulator or the public power supply system. A suitable carrier bag, a so-called lorgnette with various longpass filters and a cross-section converter for visualizing shoeprints form useful accessories of the forensic lighting device.
Abstract:
A reflected ultraviolet light measuring device, a measuring method for measuring ultraviolet light reflection intensity by using the reflected ultraviolet light measuring device, and a valuation method for evaluating ultraviolet light absorbability of an object by using measuring results by the method, said device comprising an irradiating unit comprising a at least one light emitting diode for irradiating ultraviolet light on an object, and a light receiving unit for receiving a reflected light from the object, wherein the light receiving unit is arranged at an angle in which a regular reflected light from the object does not enter.
Abstract:
The disclosure relates to a method and apparatus for a compact birefringent interference imaging spectrometer. More specifically, the disclosure relates to a portable system for obtaining a spectrum of a sample. The portable system may include a first photon emission source for illuminating the sample with a first plurality of photons to thereby produce photons scattered by the sample; an optical lens for collecting the scattered photons; a filter for receiving the collected scattered photons and providing therefrom filtered photons; a first photon detector for receiving the filtered photons and obtaining therefrom a spectrum of the sample; and a rejection filter for blocking the photons from said first photon emission source from entering said first photon detector. The disclosure additionally relates to methods of using such portable systems.
Abstract:
A pen-size inspection lamp for detecting fluorescent leak detection materials in hard-to-reach areas. The inspection lamp includes a housing, an extendible handle, at least one LED and a mirror assembly. The mirror assembly includes a mirror, a clip for attaching the mirror to the housing, and an arm extending between the clip and the mirror with a hinge connection for rotating the mirror to different reflection angles with respect to the LED.
Abstract:
A semiconductor forensic light is disclosed. The forensic light may use a variety of semiconductor light sources to produce light that contrasts forensic evidence against its background for viewing, photographing and collection. Example semiconductor light sources for the forensic light include light emitting diodes and laser chips. A heat sink, thermoelectric cooler and fan may be included to keep the forensic light cool. A removable light source head may be included on the forensic light to provide for head swapping to give the user access to different wavelengths of light.
Abstract:
A portable system is provided for inspecting presence of a coating on a surface. The portable system includes an optical source and a portable optical probe in optical communication with the optical source. The portable optical probe is arranged to access a surface, emit light onto the accessed surface, and receive light reflected by the accessed surface. A portable color discriminator is in optical communication with the portable optical probe and is arranged to discriminate colors of light received by the portable optical probe. A portable logic controller is arranged to determine presence of a coating on the accessed surface responsive to the discriminated colors of the reflected light. Optional configurations of the portable optical probe, including telescopic, 90 degree, and pivoting sensor tips, allow optical inspection of hard-to-reach surfaces as desired.
Abstract:
According to the present invention, there is disclosed a system and a method for detecting the presence of fecal contamination or ingesta on objects, such as a protein source, a worker's hands or utensils. In one embodiment, there is included a supporting structure which supports a diffuse light source, the light source emitting light having a wavelength effective to elicit fluorescence from the ingesta or fecal matter at a wavelength between about 660 to 680 nm into an area adjacent to the system, and a light detection device to detect light at a wavelength between about 660 to 680 nm from the area adjacent to the system. The detection of light at a wavelength between about 660 to 680 nm indicates the presence of fecal contamination or other ingesta. There is also disclosed a method of using such a device to detect the presence of such contamination, optionally including further steps to identify the source of any contamination and to modify any practices so that the spread of contamination may be reduced.