Abstract:
The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.
Abstract:
A (bio)chemo-functional waveguide grating structure consisting of at least one (bio)chemo-functional waveguide grating structure unit or at least one (bio)chemo-functional sensor location with beam guidance permitting light beam separation, as well as detection methods for parallel analysis that are marking-free or based on marking.
Abstract:
A system for measuring a biological parameter, such as blood glucose, the system comprising the steps of directing laser pulses from a light guide into a body part consisting of soft tissue, such as the tip of a finger to produce a photoacoustic interaction. The resulting acoustic signal is detected by a transducer and analyzed to provide the desired parameter.
Abstract:
A method and apparatus for use in the recycling of post consumer or post industrial waste carpet or Polyamide-6 and/or Polyamide-66 containing non-carpet waste utilizes a hand-held portable device utilizing spectroscopic principles to accurately and quickly identify the material of the waste (carpet). The spectrometer envisioned for this task includes an infrared radiation source for illuminating the waste (carpet) sample, a selector for selecting a predetermined number of discrete wavelengths and a detection system to detect reflected radiation within the discrete wavelengths. The selector can be either a plate with a plurality of slots which positionally correspond to locations in a dispersed light beam according to the predetermined discrete wavelengths or a plurality of filters selected to pass the discrete wavelengths. The selection of the discrete wavelengths can either take place before the carpet sample is irradiated or can take place by selecting the discrete wavelengths from reflected radiation.
Abstract:
A fiber optic probe comprises a pair of substantially parallel optical fibers separated by a gap and positioned in a centrifuge tube which contains a stratified medium. The pair of fibers includes a transmit fiber for directing light from a light source into a substantially undisturbed portion of the stratified medium disposed in the gap. Light traversing the portion of the stratified medium in the gap is collected by a receive fiber and provides an indication of a light property of the portion of the stratified medium disposed in the gap. The pair of fibers are adapted to be moved in the stratified medium without significantly disturbing the stratification of the medium. As the fibers are moved, light property measurements can be obtained in other substantially undisturbed portions of the stratified medium.
Abstract:
A probe for monitoring a fluid medium employing at least one fiber optic emitting a wave into the fluid medium. The fluid medium scatters or causes luminescence of the emitted wave which is then collected by at least one fiber optic. The probe includes a base having a hole and a window covering the hole of the base, wherein the window transmits electromagnetic waves. The probe collects scattered and luminescence of waves through one or more fiber optics placed behind the window and transmits the waves to a spectrometer connected to a computer which can analyze the fluid medium on a real-time on-line basis. Piezoresistive and temperature sensing elements are deposited on the window which can also serve as a force collector diaphragm. The elements are located primarily on the periphery of the diaphragm leaving a part of the diaphragm open for transmission and collection of the waves.
Abstract:
Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.
Abstract:
A method for detecting biological activities in a specimen, for instance a blood sample, employing a sealable container with a culture medium, into which the sample is introduced, wherein metabolic processes are enhanced in the presence of microorganisms in the sample, thereby causing changes to take place in the concentrations of the substances subject to such processes. The concentration changes are measured by optodes that are in direct contact with the sample, and by an excitation and detection assembly assigned to these optodes, to which is connected an evaluation unit for determining concentration changes of the substances over time.
Abstract:
A fiber optic fluid opacity sensor includes a light source (12) transmitting light to dividing means (14) for providing a sample light signal (18) and a reference light signal (20) to dual photodetectors (26, 28). Sample and reference optical pathways (19, 21) are defined by optical fibers (18, 20) spaced apart from and axially aligned with the photodetectors (26, 28) at a predetermined distance. Signal processing means (30) takes the log ratio output of the signals from the photodetectors (26, 28) for cancelling the effect of light source drift since the same source (12) is common to both for measuring the light transmission and determining opacity therefrom. A sample probe (40) contains the photodetectors (26, 28) and the sample and reference optical pathways (19, 21). The light source (12) and the signal processing means (30) are situated outside of the probe (40) and by virtue thereof outside of the sample process line (48).
Abstract:
A dual fiber forward scattering optrode for Raman spectroscopy with the remote ends of the fibers in opposed, spaced relationship to each other to form a analyte sampling space therebetween and the method of measuring Raman spectra utilizing same. One optical fiber is for sending an exciting signal to the remote sampling space and, at its remote end, has a collimating microlens and an optical filter for filtering out background emissions generated in the fiber. The other optical fiber is for collecting the Raman scattering signal at the remote sampling space and, at its remote end, has a collimating microlens and an optical filter to prevent the exciting signal from the exciting fiber from entering the collection fiber and to thereby prevent the generation of background emissions in the collecting fiber.