Abstract:
A method of making a microelectronic assembly including a compliant interface includes providing a first support structure, such as a flexible dielectric sheet, having a first surface and a porous resilient layer on the first surface of the first support structure, stretching the first support structure and bonding the stretched first support structure to a ring structure. The first surface of a second support structure, such as a semiconductor wafer, is then abutted against the porous layer and, desirably after the abutting step, a first curable liquid is disposed between the first and second support structures and within the porous layer. The first curable liquid may then be at least partially cured.
Abstract:
A method for making a semiconductor chip package. At least one compliant pad is provided on a surface of a substrate and a chip unit is attached to the at least one compliant pad. The at least one compliant pad has a first coefficient of thermal expansion (“CTE”). An encapsulant having a second CTE lower than the CTE of the compliant pads is disposed around the at least one compliant pad to form a composite layer between the chip unit and the substrate.
Abstract:
A method of making an anisotropic conductive element for use in microelectronic packaging includes providing a layer of material having a pair of oppositely-directed major faces, the layer incorporating a curable dielectric material in a fluid condition and electrically conductive particles in the curable dielectric material and applying a magnetic field to the layer of a material so as to alter the configuration of the particles and so as to form areas of high particle concentration defining a plurality of conductive paths extending between the major faces of the layer of a material. After applying the magnetic field, the dielectric material is cured. The layer may be compressed for moving the conductive particles together to provide lower resistance electrical paths through the layer. In certain embodiments, at last some of the conductive particles are elongated so that when the magnetic field is applied to the layer of a material, the magnetic field turns the axes of elongation of at least some of the elongated particles towards the vertical direction. In other embodiments, the magnetic field moves at least some of the conductive particles in horizontal directions.
Abstract:
A circuit assembly has a heat sink assembly and a chip scale package assembly. The chip scale package assembly has an integrated circuit die coupled to a first printed wiring board. The heat sink assembly has an integrated circuit die coupled to a second printed wiring board. Preferably, the heat sink assembly and the chip scale package assembly are assembled separately then assembled together. The circuit pads on the first printed wiring board correspond with circuit pads on the second printed wiring board. The circuit pads may be coupled together by solder or adhesive bonding. The circuit pads on the first printed wiring board may have solder balls formed of high temperature solder that do not melt when the heat sink assembly is assembled with chip scale package assembly. The solder balls allow chip scale package assembly to maintain a predetermined distance from the circuit pads on the second printed wiring board.
Abstract:
Disclosed are an insulating film having improved adhesive strength and a multilayer printed circuit board having the same. The insulating film made of an epoxy resin, a rubber and a filler, for use in an insulating layer of a multilayer printed circuit board, is composed of a desmear-treated first coating layer and a non-desmear treated second coating layer. As such, the first coating layer has more rubber and filler amounts and less epoxy resin amount than does the second coating layer. The insulating film is advantageous in light of high roughness thereon by the desmear treatment, and an improvement of adhesive strength between an insulating layer and a plating layer formed on the insulating layer, upon preparation of the multilayer printed circuit board.
Abstract:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.
Abstract:
An interposer member having strategically positioned apertures for electrically connecting an electronic device to a circuitized substrate. The member includes a homogeneous elastomer core having strategically positioned apertures. The apertures are positioned through the member approximately equidistant between adjacent plated through holes and/or conductive pads. Such positioning relieves stress from the plated through holes and/or conductive pads, and increases the contact compliancy of the member.
Abstract:
A method for selectively removing metal from a metallized substrate (e.g., a metallized polymer film) and the formation fo devices thereby are provided. The method involves selectively exposing the metallized surface to a demetallizing (i.e., an oxidizing) chemical solution. The metallized layer can be selectively exposed to the demetallizing solution using a flexographic printing process wherein printing rollers are used to transfer the demetallizing solution to the metallized surface. An identification device including, for example, a holographic, retro-reflective, or other metallized material and a radio-frequency transponder are also provided. The radio-frequency transponder includes an RF chip and an antenna in electrical communication with the chip. The identification device including the holographic image allows both electronic identification through the reading of identification data stored in the chip and optical identification via the holographic image.
Abstract:
A method and apparatus to eliminate conductive contamination reliability problems for assembled substrates, such as electrical arcing in power semiconductor leads. One embodiment of the invention involves a method for assembling an electrical component having leads on a substrate having conductive contacts, wherein an elastomer part encapsulates the leads of the electrical component. A second embodiment of the invention involves assembling an electrical component having leads to a substrate having conductive contacts, wherein an elastomer shape cut by a punch die encapsulates the leads of the electrical component. A third embodiment of the invention involves an assembled substrate including an electrical component having leads, and an elastomer surrounding the leads to encapsulate the leads.
Abstract:
A method of making a microelectronic assembly including a compliant interface includes providing a first support structure, such as a flexible dielectric sheet, having a first surface and a porous resilient layer on the first surface of the first support structure, stretching the first support structure and bonding the stretched first support structure to a ring structure. The first surface of a second support structure, such as a semiconductor wafer, is then abutted against the porous layer and, desirably after the abutting step, a first curable liquid is disposed between the first and second support structures and within the porous layer. The first curable liquid may then be at least partially cured.