-
公开(公告)号:US20180372652A1
公开(公告)日:2018-12-27
申请号:US15568958
申请日:2017-08-23
Applicant: KLA-Tencor Corporation
Inventor: Vincent Immer , Tal Marciano , Etay Lavert
IPC: G01N21/95 , G02B21/00 , G02B21/06 , G02B21/18 , H01L21/67 , H01L21/66 , G02B21/36 , G01J3/453 , G01N21/956
CPC classification number: G01N21/9501 , G01J3/453 , G01N21/31 , G01N21/55 , G01N21/956 , G02B21/0016 , G02B21/0056 , G02B21/06 , G02B21/082 , G02B21/18 , G02B21/365 , G03F7/70633 , H01L21/67259 , H01L22/12
Abstract: A device and method for expediting spectral measurement in metrological activities during semiconductor device fabrication through interferometric spectroscopy of white light illumination during calibration, overlay, and recipe creation.
-
212.
公开(公告)号:US10136819B2
公开(公告)日:2018-11-27
申请号:US15888052
申请日:2018-02-04
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: G01J3/00 , A61B5/00 , A61B5/145 , A61B5/1455 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G01J3/18 , G01J3/12 , G01M3/38 , G01N21/85 , G01N21/95 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: An imaging device includes laser diodes (LDs) generating near-infrared wavelength light, lenses configured to deliver the light to tissue, a first receiver having one or more detectors, and a first part with at least one of the LDs capable of being pulsed. The first receiver receives light reflected from the tissue and is synchronized to the pulsed light and configured to perform a time-of-flight measurement. An infrared camera receives light reflected by the tissue from a second part of the imaging device. The camera captures light while the second part is off, and while the second part is on to generate corresponding signals, and differences the signals to generate an image. An array of LDs generates a grid of spots on the tissue, which is reflected to the camera. A coupled phone, tablet, or computer receives and processes the time-of-flight measurement, the image, and the reflected grid of spots.
-
公开(公告)号:US10082425B2
公开(公告)日:2018-09-25
申请号:US15282305
申请日:2016-09-30
Applicant: UNITY SEMICONDUCTOR
Inventor: Philippe Gastaldo
CPC classification number: G01J3/0208 , G01B11/022 , G01B11/0608 , G01B11/22 , G01B11/245 , G01B2210/50 , G01B2210/56 , G01J3/0218 , G01J3/18 , G01J3/453 , G01N21/8806 , G01N21/8851 , G01N21/9501 , G01N21/956 , G01N2201/063 , G01N2201/0833 , G01N2201/105 , G02B21/0064 , H01L22/12
Abstract: A confocal chromatic device is provided, including at least one chromatic lens with an extended axial chromatism; at least one broadband light source; at least one optical detector; and at least one measurement channel with a planar Y-junction made with a planar waveguide optics technology, and arranged for transferring light from the at least one light source towards the at least one chromatic lens and for transferring light reflected back through the at least one chromatic lens towards the at least one optical detector.
-
公开(公告)号:US09995722B2
公开(公告)日:2018-06-12
申请号:US15855201
申请日:2017-12-27
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: G01J3/00 , G01N33/15 , A61B5/00 , A61B5/1455 , A61B5/145 , G01J3/10 , G01J3/28 , G01J3/453 , G01N21/359 , G01N21/3563 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/44 , G01N33/49 , H01S3/30 , G01J3/14 , G01J3/18 , G01M3/38
CPC classification number: G01N33/15 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/0088 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , G01J3/108 , G01J3/14 , G01J3/1838 , G01J3/28 , G01J3/2823 , G01J3/453 , G01J2003/104 , G01J2003/2826 , G01M3/38 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/442 , G01N33/49 , G01N2021/3513 , G01N2021/399 , G01N2201/061 , G01N2201/062 , G01N2201/08 , G01N2201/12 , H01S3/302
Abstract: A measurement system includes a light source having semiconductor sources configured to generate an input optical beam, a multiplexer configured form an intermediate optical beam from the input optical beam, fibers including a fused silica fiber configured to receive the intermediate optical beam and to form an output optical beam. The output optical beam comprises wavelengths between 700 and 2500 nanometers with a bandwidth of at least 10 nanometers. A measurement apparatus is configured to deliver the output beam to a sample to generate a spectroscopy output beam. A receiver is configured to receive and process the spectroscopy output beam to generate an output signal, wherein the receiver processing includes chemometrics or multivariate analysis methods to permit identification of materials within the sample, the light source and the receiver are remote from the sample, and the sample includes plastics or food industry goods.
-
公开(公告)号:US20180140198A1
公开(公告)日:2018-05-24
申请号:US15860065
申请日:2018-01-02
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , G01J3/453 , A61B5/145 , A61B5/1455 , G01J3/10 , G01J3/28 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N33/49 , G01N33/44 , G01N33/15 , G01N33/02 , G01N21/88 , G01M3/38 , H01S3/30 , G01J3/14 , G01J3/18
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/1838 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01J2003/104 , G01J2003/1208 , G01J2003/2826 , G01M3/38 , G01N21/35 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/9508 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G01N2021/3595 , G01N2021/399 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , G06F19/00 , G16H40/67 , H01S3/0092 , H01S3/06758 , H01S3/302
Abstract: A wearable device includes a measurement device having light emitting diodes (LEDs) measuring a physiological parameter. The measurement device modulates the LEDs to generate an optical beam having a near-infrared wavelength between 700-2500 nanometers. Lenses receive and deliver the optical beam to tissue, which reflects the optical beam to a receiver having spatially separated detectors coupled to analog-to-digital converters configured to generate receiver outputs. The receiver captures light while the LEDs are off, and reflected light from the tissue while the LEDs are on, to generate first and second signals, respectively. Signal-to-noise ratio is improved by differencing the first and second signals and by differencing the receiver outputs. The measurement device further improves signal-to-noise ratio of the reflected optical beam by increasing light intensity of the LEDs relative to an initial light intensity. The measurement device generates an output signal representing a non-invasive measurement on blood contained within the tissue.
-
公开(公告)号:US20180113026A1
公开(公告)日:2018-04-26
申请号:US15565002
申请日:2015-04-16
Applicant: Shimadzu Corporation
Inventor: Tadafumi KAMIKAKE
CPC classification number: G01J3/4535 , G01J3/108 , G01J3/45 , G01J2003/2866 , G01N2021/3595
Abstract: A Fourier transform spectroscope having a control interferometer capable of facilitating optical axis adjustment and miniaturization by reducing the number of optical elements. Using a first reflection mirror provided with a reflection surface configured to reflect measurement light emitted from a measurement light source toward a beam splitter and a first through-hole extending along an optical axis direction of the measurement light reflected on the reflection surface and a laser light source holding portion configured to hold a laser light source such that laser light emitted from the laser light source is incident to the beam splitter through the first through-hole, optical axes of the measurement light and the laser light are aligned with each other.
-
公开(公告)号:US09921107B2
公开(公告)日:2018-03-20
申请号:US15363186
申请日:2016-11-29
Inventor: Michael Derek Hargreaves , Timothy M. Pastore , Gregory H. Vander Rhodes , Brendon D. Tower
CPC classification number: G01J3/4412 , G01J3/0264 , G01J3/0272 , G01J3/0283 , G01J3/0286 , G01J3/0291 , G01J3/28 , G01J3/44 , G01J3/45 , G01J3/453 , G01J2003/2833 , G01N21/35 , G01N21/65 , G01N2021/3595 , G01N2201/0221
Abstract: A spectrometer system comprising a housing configured as a handheld device with a screen; a source of narrow band illumination; a sensor that detects Raman scattering signals; a source of wide band illumination; an optical element that detect Fourier transform infrared (FTIR) signals; a memory device comprising a library of information with Raman scattering reference information and FTIR reference information; and a processor configured to execute software instructions, wherein the software instructions are configured to: direct the narrow band illumination to the sample; detect the Raman scattering signals; direct the wide band illumination to the sample; detect the FTIR signals; determine a composition of the sample from a similarity between the Raman scattering spectral information and the Raman scattering reference information, and from a similarity between the FTIR spectral information and the FTIR reference information; and display the composition of the sample on the screen.
-
公开(公告)号:US20180066935A1
公开(公告)日:2018-03-08
申请号:US15259085
申请日:2016-09-08
Applicant: Traycer Diagnostic Systems, Inc.
Inventor: Don J. Burdette
CPC classification number: G01B11/0633 , G01J3/453
Abstract: A mathematical extended bandwidth algorithm method (MEB) is used for acquiring real-time thickness profile measurements of a multi-layer sample of unknown layer thicknesses each above about 10 μm. A statistical based thickness profile algorithm method (SBTP) is used for acquiring real-time thickness profile measurements of a multi-layer sample of unknown layer thicknesses each above about 1 μm.
-
公开(公告)号:US09903760B2
公开(公告)日:2018-02-27
申请号:US14989806
申请日:2016-01-07
Applicant: SHIMADZU CORPORATION
Inventor: Toyohiko Tanaka
CPC classification number: G01J3/4535 , G01J3/0216 , G01J3/108 , G01J3/42 , G01J2003/425
Abstract: A resin identification device capable of measuring samples having various shapes is provided. The resin identification device includes a Fourier transform infrared spectrophotometer (FTIR), and sample placing plates 31 and 32 having an opening 33. The FTIR includes: an infrared light source section 10, irradiating a sample S with infrared light; an infrared light detection section 20, detecting light intensity information of the infrared light reflected from the sample S; and a control section 50, obtaining the light intensity information. By replacement of the sample S in a predetermined position so as to block off the opening 33, the infrared light source section 10 irradiates infrared light on a lower surface of the sample S, and the infrared light detection section 20 detects the light intensity information of the infrared light reflected by the lower surface of the sample S.
-
220.
公开(公告)号:US09885698B2
公开(公告)日:2018-02-06
申请号:US15212549
申请日:2016-07-18
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: G01J3/00 , G01N33/15 , A61B5/1455 , A61B5/00 , G01J3/10 , G01J3/28 , G01J3/453 , G01N21/359 , G01J3/14 , A61B5/145 , G01N33/49 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/44 , G01N21/88 , G01J3/42 , G01J3/02 , H01S3/30 , G01J3/18 , G01M3/38 , G01J3/12 , G01N21/35 , G01N21/85 , G01N21/95 , H01S3/067 , H01S3/00
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/1838 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01J2003/104 , G01J2003/1208 , G01J2003/2826 , G01M3/38 , G01N21/35 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/9508 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G01N2021/3595 , G01N2021/399 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , G06F19/00 , G16H40/67 , H01S3/0092 , H01S3/06758 , H01S3/302
Abstract: A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.
-
-
-
-
-
-
-
-
-