Abstract:
A signal transmission system including: a first connector apparatus, and a second connector apparatus that is coupled with the first connector apparatus. The first connector apparatus and the second connector apparatus are coupled together to form an electromagnetic field coupling unit, and a transmission object signal is converted into a radio signal, which is then transmitted through the electromagnetic field coupling unit, between the first connector apparatus and the second connector apparatus.
Abstract:
This magnetic ring is formed by an upper U-shaped part and a lower U-shaped part, each upper and lower part comprising two vertical arms each introduced into a respective hole of the printed circuit board, each arm of the upper part being superimposed, within the respective hole and in a horizontal direction, on the corresponding arm of the lower part to set up magnetic continuity between these two parts of the magnetic ring.
Abstract:
Methods and systems for providing crosstalk compensation in a jack are disclosed. According to one method, the crosstalk compensation is adapted to compensate for undesired crosstalk generated at a capacitive coupling located at a plug inserted within the jack. The method includes positioning a first capacitive coupling a first time delay away from the capacitive coupling of the plug, the first capacitive coupling having a greater magnitude and an opposite polarity as compared to the capacitive coupling of the plug. The method also includes positioning a second capacitive coupling at a second time delay from the first capacitive coupling, the second time delay corresponding to an average time delay that optimizes near end crosstalk. The second capacitive coupling has generally the same overall magnitude but an opposite polarity as compared to the first capacitive coupling, and includes two capacitive elements spaced at different time delays from the first capacitive coupling.
Abstract:
A circuit substrate includes a first pair of ground lines, a second pair of ground lines, a plurality of first connection lines, a plurality of second connection lines and a plurality of conductive pillars. The first and second pairs of ground lines are located on first and second surfaces of the substrate, respectively. The pillars are located in the substrate and vertically conducted between the first pair of ground lines and the second connection lines and between the second pair of ground lines and the first connection lines, and the first and second pairs of ground lines are conducted, so that a 3-D grounding circuit loop is formed. Moreover, a first pair of signal lines is disposed between the first connection lines for grounding and a second pair of signal lines is disposed between the second connection lines for grounding to get a better signal integrity.
Abstract:
A wiring board includes a core structure having a first surface and a second surface on the opposite side of the first surface, a first buildup structure formed on the first surface of the core structure and including insulation layers, and a second buildup structure formed on the second surface of the core structure and including insulation layers and an inductor device. The insulation layers in the second buildup structure have the thicknesses which are thinner than the thicknesses of the insulation layers in the first buildup structure, and the inductor device in the second buildup structure is position on the second surface of the core structure and includes at least a portion of a conductive pattern formed in the core structure.
Abstract:
Manufacturing circuits with reference plane voids over vias with a strip segment interconnect permits routing critical signal paths over vias, while increasing via insertion capacitance only slightly. The transmission line reference plane defines voids above (or below) signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. In order to provide increased routing density, signal paths are routed over the voids, but disruption of the signal paths by the voids is prevented by including a conductive strip through the voids that reduces the coupling to the signal-bearing PTHs and maintains the impedance of the signal path conductor.
Abstract:
A differential signal pair transmission structure adapted to a wiring board and including a first signal path and a second signal path is provided. The first signal path includes a first upper trace, a first lower trace and a first conductive through via. The second signal path includes a second upper trace, a second lower trace and a second conductive through via. A portion of the first signal path and a portion of the second signal path overlaps in the normal projection onto the upper or lower surface of the wiring board. Normal projections of the first and the second signal path projecting onto the upper surface of the wiring board are substantially symmetric with respect to a line which is perpendicular to a segment connecting normal projections of axes of the first and the second through via onto the upper surface and passes through the midpoint of the segment.
Abstract:
A printed circuit board (PCB) substrate and method for construction of the same. In one embodiment, a first dielectric material is associated with a first current return layer and a second dielectric material is associated with a second current return layer. A first signal path layer is embedded in the first dielectric material and a second signal path layer is embedded in the second dielectric material, wherein the first and second signal path layers are substantially parallel to each other in a stack-up arrangement. An adhesive layer is interposed between the first dielectric material and the second dielectric material.
Abstract:
A mirror image shielding structure is provided, which includes an electronic element and a ground shielding plane below the electronic element. The shape of the ground shielding plane is identical to the projection shape of the electronic element, and the horizontal size of the ground shielding plane is greater than or equal to that of the electronic element. Thus, the parasitic effect between the electronic element and the ground shielding plane is effectively reduced, and the vertical coupling effect between electronic elements is also reduced. Furthermore, the vertical impact on the signal integrity of the embedded elements caused by the layout of the transmission lines is prevented.
Abstract:
A motor for holding a disk with a mounting opening in place includes a rotor unit including a rotor magnet rotatable about a central axis and a stator unit including a stator arranged opposite to the rotor magnet and a circuit board electrically connected to the stator. Wiring lines of the circuit board include output-side land portions electrically connected to first ends of coils of the stator, a connection-side land portion electrically connected to second ends of the coils forming a neutral point, a connection portion electrically connected to an external power source, output-side wiring portions arranged to electrically interconnect the output-side land portions and the connection portion, and a connection-side wiring portion arranged to electrically interconnect the connection-side land portion and the connection portion. Each of the output-side wiring portions has a width greater than a width of the connection-side wiring portion.