Micromechanical accelerometer for automotive applications
    231.
    发明授权
    Micromechanical accelerometer for automotive applications 失效
    用于汽车应用的微机械加速度计

    公开(公告)号:US06149190A

    公开(公告)日:2000-11-21

    申请号:US030641

    申请日:1998-04-03

    Abstract: A micromechanical capacitive accelerometer is provided from a single silicon wafer. The basic structure of the micromechanical accelerometer is etched in the wafer to form a released portion in the substrate, and the released and remaining portions of the substrate are coated with metal under conditions sufficient to form a micromechanical capacitive accelerometer. The substrate is preferably etched using reactive-ion etching for at least the first etch step in the process that forms the basic structure, although in another preferred embodiment, all etching is reactive-ion etching. The accelerometer also may comprise a signal-conditioned accelerometer wherein signal-conditioning circuitry is provided on the same wafer from which the accelerometer is formed, and VLSI electronics may be integrated on the same wafer from which the accelerometer is formed. The micromechanical capacitive accelerometer can be used for airbag deployment, active suspension control, active steering control, anti-lock braking, and other control systems requiring accelerometers having high sensitivity, extreme accuracy and resistance to out of plane forces.

    Abstract translation: 从单个硅晶片提供微机电电容式加速度计。 在晶片中蚀刻微机械加速度计的基本结构,以在衬底中形成释放部分,并且在足以形成微机械电容式加速度计的条件下,用金属涂覆衬底的释放和剩余部分。 在形成基本结构的工艺中,优选使用反应离子蚀刻对至少第一蚀刻步骤蚀刻衬底,尽管在另一优选实施例中,所有蚀刻都是反应离子蚀刻。 加速度计还可以包括信号调节加速度计,其中信号调节电路设置在与其形成加速度计的同一晶片上,并且VLSI电子器件可以集成在形成加速度计的相同晶片上。 微机电容加速度计可用于安全气囊部署,主动悬架控制,主动转向控制,防抱死制动以及需要具有高灵敏度,极高精度和抗平面外力的加速度计的其他控制系统。

    Method for forming suspended micromechanical structures
    233.
    发明授权
    Method for forming suspended micromechanical structures 有权
    形成悬浮微机械结构的方法

    公开(公告)号:US6020272A

    公开(公告)日:2000-02-01

    申请号:US169307

    申请日:1998-10-08

    Inventor: James G. Fleming

    Abstract: A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

    Abstract translation: 公开了一种从{111}结晶硅形成悬浮微机械结构的微加工方法。 微加工方法基于使用各向异性干蚀刻来限定结构的侧向特征,其被蚀刻成{111} - 硅基底到第一蚀刻深度,从而形成该结构的侧壁。 然后用保护层涂覆侧壁,并且将基底干蚀刻至第二蚀刻深度以限定结构与基底的间隔。 使用选择性各向异性湿蚀刻剂(例如KOH,EDP,TMAH,NaOH或CsOH)横向地削去第一和第二蚀刻深度之间的结构,由此沿{111}晶面形成基本上平面的该结构的下表面, 平行于结构的上表面。 通过湿蚀刻剂的底切的横向范围通过定时蚀刻,倾斜的{111} - 硅面的位置或预先形成的蚀刻停止点的位置来控制和有效地终止。 该本方法允许形成具有大垂直尺寸和大质量的悬浮微机械结构,同时允许可通过干蚀刻定义提供的详细横向特征。 另外,本发明的方法与基板上的电子电路的形成兼容。

    PRESSURE SENSING MODULE AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20240327205A1

    公开(公告)日:2024-10-03

    申请号:US18614740

    申请日:2024-03-25

    Abstract: A pressure sensing module includes a substrate and a sensing layer. The substrate has a first surface and a second surface opposite to each other. The substrate includes a stepped cavity and an opening. The stepped cavity extends from the first surface to the second surface, the opening extends from the second surface to the first surface, and the stepped cavity communicates with the opening. The sensing layer is disposed on the first surface of the substrate and covers the first surface of the substrate. The sensing layer includes at least one sensing element and a cross-shaped structure. The cross-shaped structure includes a central portion and a plurality of extending portions connecting the central portion. The central portion and the extending portions respectively include at least one hollow portion. An orthographic projection of the central portion of the cross-shaped structure on the substrate overlaps with the opening of the substrate.

    METHOD FOR PRODUCING A MICROMECHANICAL DEVICE COMPRISING A CAVITY HAVING A MELT SEAL

    公开(公告)号:US20240262682A1

    公开(公告)日:2024-08-08

    申请号:US18423008

    申请日:2024-01-25

    Abstract: A method for producing a micromechanical device. The method includes: providing a MEMS substrate having micromechanical functional layers bounding a cavity; structuring an oxide layer to form an oxide mask having at least one first recess having a first diameter; applying a resist mask to the oxide mask and the first recess; introducing a second recess into the resist mask in the area of the first recess, the second diameter being smaller than the first diameter; introducing a first trench into the MEMS substrate through the second recess; removing the resist mask; introducing a second trench into the MEMS substrate through the first recess and simultaneously deepening the first trench at least through the micromechanical substrate; adjusting a desired gas composition at a desired pressure in the cavity; sealing the first trench using a melt plug by melting substrate material of the MEMS substrate that surrounds the first trench.

Patent Agency Ranking