Abstract:
A bandwidth meter apparatus and method for measuring the bandwidth of a spectrum of light emitted from a laser input to the bandwidth meter which may comprise an optical bandwidth monitor providing a first output representative of a first parameter which is indicative of the bandwidth or the light emitted from the laser and a second output representative of a second parameter which is indicative or the bandwidth of the light emitted from the laser; and, an actual bandwidth calculation apparatus utilizing the first output and the second output as part of a multivariable equation employing predetermined calibration variables specific to the optical bandwidth monitor, to calculate an actual bandwidth parameter; the multivariable equation comprising a symmetry sensitive term.
Abstract:
A compact spectrometer operable in a wavelength range of 4.5 or more microns includes an entrance slit, a collimating mirror, a grating, a focusing mirror and a first focal plane. At least some radiation passing through the slit follows an optical path in which at least some radiation passing through the slit is reflected by the collimating mirror onto the grating, which in turn reflects at least some radiation onto the focusing mirror, which in turn reflects and focuses at least some radiation at a first focal plane and onto the two-dimensional array of detectors. Each column in the two-dimensional array of detectors corresponds to a wavelength in the 4.5 or more micron range, the two-dimensional array includes a plurality of columns that collectively correspond to wavelengths spanning the 4.5 or more micron range, and each adjacent pair of columns in the two-dimensional array of detectors corresponds to two wavelengths that differ by an equal amount. The entrance slit, the collimating mirror, the grating, the focusing mirror and the first focal plane are positioned within a volume that is equal or less than 192 cubic inches in size.
Abstract:
A target acquisition attachment device for the accurate handheld spectrophotometric measurement of small samples or samples of particular areas of larger objects, having an orifice in its base plane of precise location and size that will properly align with the aperture of the handheld spectrophotometer. The alignment occurs when the target device is first placed over the small sample and subsequently, the handheld spectrophotometer is placed within the peripheral dimensions of the target device. This alignment of the handheld spectrophotometer's aperture within the peripheral dimensions of the small sample can be achieved even when the sample becomes no longer visible to the spectrophotometer operator due to the handheld spectrophotometer's placement over the small sample being targeted for measurement.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A detection system is used during irradiation of an interaction region of a structure with laser light. The structure includes embedded material. The detection system includes a focusing lens positioned to receive light emitted from the interaction region. The detection system further includes an optical fiber optically coupled to the focusing lens to receive light from the focusing lens. The detection system further includes a spectrometer optically coupled to the optical fiber to receive light from the optical fiber. The spectrometer is adapted for analysis of the light for indications of the embedded material within the interaction region.
Abstract:
A color measurement instrument includes a housing and illuminators, a two-dimensional photodetector array, and an optics system within the housing. A UV filter wheel closes the housing to prevent contaminants from entering the housing. The filter wheel supports UV filters and non-UV glass that can be selectively aligned with the illuminators. The photodetectors can be read in parallel, and each photodetector includes a unique spectral filter. The optics system delivers light from the sample target area equally to each of the photodetectors.
Abstract:
An in-situ spectrograph having a spectrometer module positioned at a reticle plane or at a wafer plane of a photolithography projection system is disclosed. The spectrometer module disperses light projected from an illumination source, and the produced spectrum may be recorded. The spectrum may be recorded using a photodetector or a layer of photoresist. The recorded spectrums produced by illumination sources of a plurality of steppers may be compared, thus providing a comparison of the wavelength characteristics, particularly the wavelength spread and intensity of the light of the illumination sources. A plurality of spectrometer modules may be used to provide a comparison of the central wavelength of light produced by the illumination sources. The absolute wavelength of light produced by an illumination source may be determined using a spectrometer module having a spectrometer grating.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, and the power source in a hand-held device.
Abstract:
Apparatus, systems and methods for separating a selected optical signal wavelength component from a plurality of optical signal wavelength components of an aggregate optical signal, and for passing the selected optical signal wavelength component while suppressing the remaining wavelength components are provided. Generally, the apparatus provides an optical signal wavelength selective element enabling output of a selectable optical signal wavelength component. The system contains a fiber optic cable carrying an optical signal, an optical signal measurement apparatus to measure optical signal characteristics, and an optical wavelength selector to pass the selected optical signal wavelength component to the optical signal measurement apparatu
Abstract:
An optical spectrum analyzer (OSA) 10 sequentially or selectively samples (or filters) a spectral band(s) 11 of light from a broadband optical input signal 12 and measures predetermined optical parameters of the optical signal (e.g., spectral profile) of the input light 12. The OSA 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates or spreads spatially the collimated input light, and reflects the dispersed light onto the mirror 22. A λ/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the λ/4 plate 26 to the diffraction grating 20, which reflects the light back through the collimating lens 18. The lens 18 focuses spectral bands of light (λ1–λN) at different focal points in space. One of the spectral bands 11 is focused onto a receive pigtail 28, which then propagates to a photodetector 30. A pivoting mechanism 34 pivots the diffraction grating 20 or mirror 22 about a pivot point 36 to sequentially or selectively focus each spectral band 11 to the receive pigtail 28. A position sensor 42 detects the displacement of the diffraction grating 24 or mirror.
Abstract translation:光谱分析仪(OSA)10顺序地或选择性地从宽带光输入信号12采样(或滤波)光谱带11,并且测量输入的光信号的光学参数(例如,光谱分布) 光12。 OSA 10是包括准直器组件15,衍射光栅20和反射镜22的自由空间光学装置。 发射尾纤通过准直器组件15将输入信号发射到自由空间中,并在衍射光栅20上分散或扩展空间上准直的输入光,并将分散的光反射到反射镜22上。 λ/ 4板26设置在反射镜22和衍射光栅20之间。 反射镜通过λ/ 4板26将分离的光反射回到衍射光栅20,衍射光栅20将光反射通过准直透镜18。 透镜18在空间中的不同焦点处聚焦光的光谱带(λ1 SUB-N N N)。 光谱带11中的一个聚焦在接收尾纤28上,接收引线28然后传播到光电检测器30。 枢转机构34围绕枢转点36枢转衍射光栅20或反射镜22,以顺序地或选择性地将每个光谱带11聚焦到接收尾纤28。 位置传感器42检测衍射光栅24或反射镜的位移。