Abstract:
A two-dimensional colorimeter includes: an image sensing section, having an image sensor constituted of a number of pixels arranged in a two-dimensional manner, for sensing an object image to be measured to acquire a two-dimensional image; a discriminator for discriminating whether a targeted color with respect to the two-dimensional image acquired by the image sensing section is to be corrected in terms of a pixel or pixels; and a calculator for performing a calculation to apply predetermined correction information corresponding to the color to be corrected to the two-dimensional image in terms of a pixel or pixels, based on a discrimination result by the discriminator.
Abstract:
Methods for generating a customized spectral profile, which can be used to generate a corresponding filter. A trial source spectrum is generated. An uncorrected lamp source spectrum is determined. One or more optical indices are calculated using the trial source spectrum or the uncorrected lamp source spectrum, and one or more of the optical indices are optimized by varying the trial source spectrum to generate the customized spectral profile.
Abstract:
A Micro-Electro-Mechanical System (MEMS) based Fabry-Perot array may be used as a spectral filter to light sensing array, such as a CCD or CMOS photodetector. Applying different voltages to the electrodes of individual Fabry-Perot cells within the array allows a gradient in the Fabry-Perot air gap across the Fabry-Perot array. In this manner the MEMS Fabry-Perot array serves as a spectral filter of light passing through the Fabry-Perot array to the photodetector array. Embodiments of the disclosed sensor, used with LEDs that emit light outside the photosensitivity range of a photoreceptor belt, may be used to measure spectral information from toned patches placed upon a photoreceptor belt within a marking system. Other embodiments of the disclosed sensor, used with LEDs that emit light of any wavelength, may be used to measure spectral information from toned patches placed by a marking system upon a non-photosensitive output substrate, such as an intermediate belt or paper.
Abstract:
The present disclosure includes a number of method, medium, and apparatus claims utilized for color sensor performance. One method includes determining performance of a color sensor, which can be performed by measuring a color parameter intensity and reflectance spectral power distribution of a particular type of print medium with a color sensing utility of a print apparatus. The method also can include detecting a magnitude of a difference between the measured color parameter intensity and reflectance spectral power distribution of the particular type of print medium and a predetermined intensity and reflectance spectral power distribution of the color parameter of the particular type of print medium, where the predetermined intensity and reflectance spectral power distribution is stored in memory.
Abstract:
A system, including an optical source configured to emit optical signals, and an optical receiver configured to receive optical signals; a housing having one or more optical windows; a user-detachable reflector attached to the housing, configured to enable emitted optical signals exiting an optical window to be reflected, so that the optical signals re-enter the housing via an optical window for reception by the optical receiver; and a calibrator configured to calibrate an output of the optical receiver using optical signals received by the optical receiver.
Abstract:
A color approval system that facilitates the use of electronic color submissions. The electronic color submissions contain reflectance values for a physical color sample to be submitted for approval. The system includes a data storage area accessible by a submitter of the electronic color sample and a reviewer of the color sample. The submitter upload the submission to the data storage area, from which the reviewer retrieves the submission and replies with an acceptance or rejection, typically via email. The system provides tools for the analysis of the electronic color sample and automatic formation of acceptances and rejections.
Abstract:
The present invention is composed of a computer positioned at a basal portion of an apparatus for conducting image processing and counseling processing; a first image display means for displaying a computer-processed image to a subject, mounted upright in the computer, a second image display means for displaying the computer-processed image to a counselor, mounted upright in the computer so that a display screen thereof is directed in a direction opposite the first display means; and photographic means, positioned near the first image display means, for photographing a subject directed in a direction of the first display means and feeding a facial image of the subject into the computer, thus making the apparatus small in scale and simple in composition, and suitable for a counselor to provide counseling on make-up to a subject.
Abstract:
A spectrophotometric camera and method for measuring spectral energy in different wavelength bands at a plurality of locations are disclosed. The spectrophotometric camera comprises: a light source for sequentially producing light in different wavelength bands; an imaging device containing an array of sensors for detecting light at a plurality of locations; and a reference detector and an adjusting device for adjusting the light detected by the array of sensors. Spectral reflectance data from each of the plurality of locations on the surface of a target for each wavelength band in the plurality of light wavelength bands is measured. Spectral reflectance images are created, and features are extracted from the spectral reflectance images.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.
Abstract:
Disclosed herein is reference component for a sensor. The reference component comprises a calibration surface and an integrated circuit. The integrated circuit often contains a digital representation of calibration surface properties. A corresponding sensing system, printing system, method of communicating calibration data, and sensor calibration method also are disclosed.