Abstract:
A plurality of lands are arranged in rows. The lands in adjacent rows are disposed in a staggered arrangement. A first interconnecting line is pulled out from each of the lands. Each of the lands is wider than the first interconnecting line in the row direction. A plurality of electrical connection sections are arranged in rows. The electrical connection sections in adjacent rows are disposed in a staggered arrangement. The lands are electrically connected with the electrical connection sections so as to overlap. Each of the electrical connection sections is a part of a second interconnecting line, and an insulating layer is formed between the second interconnecting lineing pattern other than the electrical connection sections and the first interconnecting lineing pattern.
Abstract:
A process for manufacturing a flexible wiring board according to the present invention comprises growing metal bumps 16 using a mask film patterned by photolithography. Fine openings can be formed with good precision, therefore, fine metal bumps 16 can be formed with good precision because laser beam is not used to form openings in a polyimide film. After metal bumps 16 have been formed, the mask film is removed and a liquid resin material is applied and dried to form a coating, which is then cured into a resin film. The coating can be etched at surface portions during coating stage to expose the tops of metal bumps 16.
Abstract:
A wired circuit board that can control characteristic impedance at connection points between wires of a suspension board with circuit and terminal portions of the wired circuit board connected thereto with a simple structure, to improve signal transmission efficiency even for fine pitch wiring or for high frequency signal. To provide this wired circuit board, a relay flexible wiring circuit board 1 is formed by a first wired circuit board 14 comprising a first metal substrate 16, a first insulating base layer 17, a first conductor layer 18 and a first insulating cover layer 19 which is substantially identical in layer structure with the suspension board with circuit 3 and a second wired circuit board 15 connected with the first wired circuit board 14 for connecting with a control circuit board 4. In this wired circuit board, since the suspension board with circuit 3 and the first wired circuit board 14 are rendered substantially identical in layer structure with each other, both characteristic impedances at these connection points can be matched with each other.
Abstract:
A die contacting substrate establishes ohmic contact with the die by means of raised portions on contact members. The raised portions are dimensioned so that a compression force applied to the die against the substrate results in a limited penetration of the contact member into the bondpads. The arrangement may be used for establishing electrical contact with a burn-in oven and with a discrete die tester. This permits the die to be characterized prior to assembly, so that the die may then be transferred in an unpackaged form. A Z-axis anisotropic conductive interconnect material may be interposed between the die attachment surface and the die.
Abstract:
In a flexible printed wiring board obtained by connecting metal bumps of a first flexible printed wiring part and connection pads of a second flexible printed wiring part, the first flexible printed wiring part is composed of a conductive layer and insulating layer adjacent thereto, holes A being provided in the insulating layer so as to reach the conductive layer, metal plugs being formed in these holes by an electrolytic plating method, metal bumps being produced by making the tips of these metal plugs project from the insulating layer. In this way, as many as possible flexible printed wiring boards can be obtained from a laminated sheet for flexible printed wiring of prescribed size.
Abstract:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
Abstract:
A method of manufacturing a wiring circuit board having bumps is disclosed in which a stable bump connection is possible, and complex operations such as plating pre-treatment are unnecessary. Bumps having a surface roughness on the tip face thereof of 0.2 to 20 nullm are formed by forming an etching mask for bump formation on bump formation surface of a metal foil which has a thickness (t1nullt2) which is the sum of a thickness t1 of a wiring circuit and a height t2 of bumps to be formed on wiring circuit and which has a surface roughness of the bump formation surface thereof of 0.2 to 20 nullm, and half etching the metal foil from the side of the etching mask for bump formation to a depth corresponding to the desired bump height t2.
Abstract:
The present invention provides for a method of interconnecting a bumped circuit having relatively fine traces to an overlying conductive layer of a laminated circuit assembly. The overlying conductive layer is laminated with a suitable insulating adhesive over a bumped relatively fine pitch circuit layer. In the general vicinity of the desired power connection, a window substantially larger than the width of the bump is etched away from the conductive material of the trace of the outer conductive layer and the adhesive is plasma etched to expose the elevated portion of the desired bump of the bumped circuit. A conductive media such as conductive polymer or solder is then applied at the etched window of the overlying relatively coarse trace, which ensures an electrical connection between the exposed portion of the bump and the overlying trace.
Abstract:
Pressure point contact for interconnecting electronic circuits wherein one component includes a flexible cable having a plurality of conductive strips with each strip terminating in contact pads having outwardly projecting pressure point contact mounds that protrude through a layer covering the strips with electrically insulated material. The other component of the interconnecting circuit includes a plurality of conductive contact elements placed on the exposed surface of a printed circuit board, LCD or other planar surface. A pressure plate is arcuate shaped and is employed for applying pressure to the backside of the flexible cable in order to force the contact mounds into pressure engagement with the contact elements on the planar surface. To provide equal application of pressure, a flat compression stabilizer plate is placed between the arcuate pressure plate and the backside of the cable. A pressure applicator is employed for applying equal pressure via the pressure plate serving as a compression stabilizer for equalizing the application pressure to the backside of the flexible cable so that pressure is evenly distributed as pressure is applied. Alternately, the contact elements on the planar surface may include raised receptacles for registering with and insertably receiving the pressure point contact mounds.
Abstract:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server or supercomputer embodiment is also described.