Terahertz frequency domain spectrometer with integrated dual laser module
    271.
    发明授权
    Terahertz frequency domain spectrometer with integrated dual laser module 有权
    具有集成双激光模块的太赫兹频域光谱仪

    公开(公告)号:US07936453B2

    公开(公告)日:2011-05-03

    申请号:US12062772

    申请日:2008-04-04

    CPC classification number: G01J3/42 G01J3/10 G01N21/3581

    Abstract: An apparatus for analyzing, identifying or imaging a target including an integrated dual laser module coupled to a pair of photoconductive switches to produce CW signals in the range of frequencies from 100 GHz to over 2 THz focused on and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral homodyne process to generate an electrical signal representative of some characteristics of the target with resolution less than 250 MHz. The photoconductive switches are activated by laser beams from the dual laser module. The lasers in the module are tuned to different frequencies and have two distinct low frequency identification tones respectively that are used in conjunction with a stable optical filter element to permit precise determination of the offset frequency of the lasers.

    Abstract translation: 一种用于分析,识别或成像目标的装置,所述目标包括耦合到一对光电导开关的集成双激光模块,以产生在从100GHz到超过2THz的频率范围内的CW信号,其聚焦并经由目标传送或反射; 以及检测器,用于从从目标接收的信号中获取光谱信息,并使用多光谱零差处理来产生表示具有小于250MHz的分辨率的目标的某些特性的电信号。 光导开关由来自双激光模块的激光束激活。 模块中的激光器被调谐到不同的频率,并且具有分别与稳定的光学滤波器元件结合使用的两个不同的低频识别音,以允许精确地确定激光器的偏移频率。

    APPARATUS AND METHOD FOR NON-INVASIVE MEASUREMENT OF A SUBSTANCE WITHIN A BODY
    272.
    发明申请
    APPARATUS AND METHOD FOR NON-INVASIVE MEASUREMENT OF A SUBSTANCE WITHIN A BODY 有权
    用于非身体测量身体物质的装置和方法

    公开(公告)号:US20110098542A1

    公开(公告)日:2011-04-28

    申请号:US12607903

    申请日:2009-10-28

    Inventor: Yonatan Gerlitz

    Abstract: A method and apparatus for the noninvasive detection of a concentration of a substance in a body, such as glucose in the human bloodstream is disclosed. The apparatus measures substance concentration by detecting radiation in the far infrared range emitted by the body using an infrared detected in combination with a set of adequate filters. In order to achieve the accuracy required, the radiation values detected by the detector are corrected for the emissions of the system components. The temperature of each system component including the detector temperature and an ambient temperate is determined using temperature sensors attached to the various system components. These temperatures are correlated with a set of predetermined calibration parameters to correct the detector readings.

    Abstract translation: 公开了用于人体血液中诸如葡萄糖之类的物质浓度无创检测的方法和装置。 该装置通过使用结合一组足够的过滤器检测的红外线检测身体发射的远红外范围内的辐射来测量物质浓度。 为了达到所需的准确度,由检测器检测到的辐射值被校正用于系统部件的发射。 包括检测器温度和环境温度的每个系统部件的温度使用连接到各种系统部件的温度传感器来确定。 这些温度与一组预定的校准参数相关,以校正检测器读数。

    METHOD AND DEVICE FOR OPTICALLY EXAMINING THE INTERIOR OF TURBID MEDIA
    273.
    发明申请
    METHOD AND DEVICE FOR OPTICALLY EXAMINING THE INTERIOR OF TURBID MEDIA 有权
    用于光学检测涡轮介质内部的方法和装置

    公开(公告)号:US20110090499A1

    公开(公告)日:2011-04-21

    申请号:US12997627

    申请日:2009-06-12

    Abstract: A method for optically examining the interior of turbid media is provided. The method comprises the steps: providing broad-band light (2); spatially separating a plurality of wavelength bands (2a, 2b, . . . , 2n) contained in the broad-band light; separately modulating the plurality of wavelength bands (2a, 2b, . . . , 2n); recombining the plurality of modulated wavelength bands to a beam (11) of spectrally encoded broad-band light; illuminating a turbid medium (8) with the beam (11) of spectrally encoded broad-band light; detecting light emanating from the turbid medium (8) with a detector (9) and demodulating the detected light with a demodulator (10) to provide spectroscopic information.

    Abstract translation: 提供了一种用于光学检查混浊介质内部的方法。 该方法包括以下步骤:提供宽带光(2); 空间上分离宽带光中包含的多个波长带(2a,2b,...,2n); 分别调制多个波长带(2a,2b,...,2n); 将所述多个调制波长带重新组合成光谱编码的宽带光的波束(11); 用频谱编码的宽带光束(11)照射混浊介质(8); 用检测器(9)检测从混浊介质(8)发出的光,并用解调器(10)解调检测到的光,以提供光谱信息。

    Polarization Standards for Microscopy
    274.
    发明申请
    Polarization Standards for Microscopy 审中-公开
    显微镜极化标准

    公开(公告)号:US20110089317A1

    公开(公告)日:2011-04-21

    申请号:US12909628

    申请日:2010-10-21

    Abstract: The present invention describes the development of thin film calibration strips for microscopy/spectroscopy systems and a simple method/routine to conduct instrument calibration using partially (uniaxially) oriented strip to calibrate microscopy system without the prior knowledge of exact polarization of the strip. The invention describes results from studies including a styryl derivative (LDS 798) embedded in poly(vinyl alcohol) (PVA) film. These films were progressively stretched up to 8 folds. Vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The stretched films have high polarization values for isotropic excitation. The isotropic and stretched PVA films doped with LDS 798 can be used as etalons in near infra red (NIR) spectroscopic measurements. The high polarization standards of the present invention have applications in NIR imaging microscopy where they can be used for correcting for instrumental factor in polarization measurements.

    Abstract translation: 本发明描述了用于显微镜/光谱系统的薄膜校准条的开发以及使用部分(单轴)取向的条进行仪器校准的简单方法/程序,以校准显微镜系统,而无需预先知道条的精确极化。 本发明描述了嵌入聚(乙烯醇)(PVA)膜中的苯乙烯基衍生物(LDS 798)的研究结果。 这些胶片逐渐拉伸至8倍。 测量吸收和荧光的垂直和水平分量,并确定不同膜拉伸比的二向色比。 拉伸膜对各向同性激发具有高极化值。 掺杂LDS 798的各向同性和拉伸PVA膜可用于近红外(NIR)光谱测量中的标准具。 本发明的高极化标准在NIR成像显微镜中具有应用,可用于校正极化测量中的仪器因素。

    Spectroscopic determination of enantiomeric purity
    275.
    发明授权
    Spectroscopic determination of enantiomeric purity 失效
    对映体纯度的光谱测定

    公开(公告)号:US07911608B2

    公开(公告)日:2011-03-22

    申请号:US11664079

    申请日:2005-09-30

    CPC classification number: G01N21/211 G01J3/42

    Abstract: A new method and strategy for the quantitative determination of enantiomeric purity that combines polarimetry, spectroscopy, and chemometric modeling. Spectral data is collected after a light beam is passed through a first polarimeter, a sample of a chiral compound, and a second polarimeter oriented at a 45 degree angle relative to the first polarimeter. The spectral data for samples of known enantiomeric composition is subjected to a type of multivariate regression modeling known as partial least squares (“PLS-1”) regression. The PLS-1 regression produces a mathematical model that can be used to predict the enantiomeric composition of a set of samples of unknown enantiomeric purity.

    Abstract translation: 用于定量测定对映体纯度的新方法和策略,其结合了偏振光谱,光谱学和化学计量学建模。 在光束通过第一偏振计,手性化合物样品和相对于第一偏振计以45度角定向的第二偏振计之后,收集光谱数据。 对已知对映异构体组合物的样品的光谱数据进行一种称为偏最小二乘法(“PLS-1”)回归的多元回归模型。 PLS-1回归产生一个数学模型,可用于预测未知对映体纯度的一组样品的对映异构体组成。

    Large amplitude high frequency optical delay
    277.
    发明授权
    Large amplitude high frequency optical delay 有权
    大振幅高频光延迟

    公开(公告)号:US07899281B2

    公开(公告)日:2011-03-01

    申请号:US12168906

    申请日:2008-07-08

    Inventor: Ronald E. Beselt

    CPC classification number: G02B26/06 G01J3/0205 G01J3/42 G01N21/3581 G02B17/023

    Abstract: Optical delay line system that includes a retro-reflection mirror which is displaced along a circular path while being maintained in angular alignment with launch and return sources of light subject the components of the system to minimum levels of unbalanced linear acceleration. A retroreflector is pivotally mounted on a rotating element such that the optical axis of the retroreflector's motion is mobile such that its angle or position changes relative to a fixed observer. There is no linear stopping and starting of the retroreflector and all acceleration of the retroreflector is rotational acceleration with small angles so the required forces in the optical delay line are greatly reduced. Both large displacement and high repetition rates are achieved. The system can be configured so that optical fibers serve as launch and return optics. Alternatively, free space beam paths deliver light to the optical delay and return the reflected light from the retroreflector.

    Abstract translation: 光学延迟线系统,其包括沿着圆形路径移位的后向反射镜,同时保持与发射和返回光源的角度对准,使得系统的部件处于最小水平的不平衡线性加速度。 后向反射器枢转地安装在旋转元件上,使得后向反射器的运动的光轴是可移动的,使得其角度或位置相对于固定的观察者而变化。 回射器没有线性停止和启动,后向反射器的所有加速度都是小角度的旋转加速度,所以光延迟线中所需的力大大降低。 实现了大排量和高重复率。 该系统可以被配置成使得光纤用作发射和返回光学器件。 或者,自由空间光束路径将光递送到光学延迟并返回来自后向反射器的反射光。

    Terahertz spectrometer
    278.
    发明授权
    Terahertz spectrometer 有权
    太赫兹光谱仪

    公开(公告)号:US07898668B2

    公开(公告)日:2011-03-01

    申请号:US12396803

    申请日:2009-03-03

    Inventor: Tomoyuki Umetsu

    CPC classification number: G01N21/3581 G01J3/02 G01J3/0278 G01J3/42

    Abstract: A terahertz spectrometer includes: a terahertz-wave generating element; an elliptical mirror; an optical lens configured to apply a terahertz wave generated by the terahertz-wave generating element, obliquely to a focusing plane of a first focus of the elliptical mirror; and a terahertz-wave detecting element arranged at a second focus of the elliptical mirror.

    Abstract translation: 太赫兹光谱仪包括:太赫兹波发生元件; 椭圆镜 光学透镜,被配置为将由所述太赫兹波产生元件产生的太赫兹波倾斜地施加到所述椭圆镜的第一焦点的聚焦平面; 以及布置在椭圆镜的第二焦点处的太赫兹波检测元件。

    Simultaneous noncontact precision imaging of microstructural and thickness variation in dielectric materials using terahertz energy
    279.
    发明授权
    Simultaneous noncontact precision imaging of microstructural and thickness variation in dielectric materials using terahertz energy 失效
    使用太赫兹能量的介电材料的微结构和厚度变化的同时非接触精密成像

    公开(公告)号:US07876423B1

    公开(公告)日:2011-01-25

    申请号:US12163382

    申请日:2008-06-27

    Applicant: Donald J Roth

    Inventor: Donald J Roth

    CPC classification number: G01N21/3581 G01B11/0625 G01J3/42 G01N21/3563

    Abstract: A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

    Abstract translation: 用于同时测量电介质材料样品中太赫赫兹电磁辐射速度的方法,而不了解样品的厚度,并且在材料样品中使用太赫兹电磁辐射测量材料样品的厚度,而无需先前了解样品的速度 公开并要求保护样品中的太赫兹电磁辐射。 该过程在多个位置评估用于显微结构变化和厚度变化的样品,并且通过位置映射微结构和厚度变化。 可以在样品的顶部使用薄的电介质材料以产生介电失配。 最初确定辐射源(收发器)的近似焦点用于良好的测量。

    Spectroscopy method and spectroscope
    280.
    发明授权
    Spectroscopy method and spectroscope 失效
    光谱法和光谱仪

    公开(公告)号:US07855788B2

    公开(公告)日:2010-12-21

    申请号:US11991542

    申请日:2006-09-06

    Abstract: To achieve an apparatus capable of measuring a light absorption coefficient f a sample with high sensitivity. A ring down spectroscope uses a wavelength-variable femtosecond soliton pulse light source 1. Pulse light is input to a loop optical fiber 6 through a first light waveguide 4 and a wavelength selective switch 5. Ring down pulse light is input to a homodyne detector through the wavelength selective switch 5. On the other hand, pulse light propagating in the first light waveguide 4 is split and input to light waveguides constituting a second light waveguide 20 through an optical directional coupler 8 and a first optical switching element 12. The pulse light propagating in the second light waveguide 20 is input to the homodyne detector as reference light and used for synchronous detection. The plural light waveguides constituting the second light waveguide 20 differ in optical length in accordance with the length of the optical fiber 6, and can slightly change the optical length.

    Abstract translation: 实现能够以高灵敏度测量样品的光吸收系数f的装置。 环形光谱仪使用波长可变飞秒激光脉冲光源1.脉冲光通过第一光波导4和波长选择开关5输入到环形光纤6中。环形脉冲光通过 波长选择开关5.另一方面,在第一光波导4中传播的脉冲光通过光学定向耦合器8和第一光开关元件12被分离并输入到构成第二光波导20的光波导上。脉冲光 在第二光波导20中传播的信号被输入到零差检测器作为参考光,并用于同步检测。 构成第二光波导路20的多个光波导根据光纤6的长度的光学长度不同,并且可以稍微改变光学长度。

Patent Agency Ranking