Abstract:
An optical modulator including a flexible printed circuit performing an electrical connection with an external circuit substrate, in which the flexible printed circuit includes a plurality of first pads and the like provided on one surface of the flexible printed circuit along one side of the flexible printed circuit, a plurality of second pads and the like provided on the other surface of the flexible printed circuit at locations that respectively correspond to the plurality of first pads, and a plurality of metal films and the like provided at locations that respectively correspond to the first pads on a side surface of the flexible printed circuit along the one side of the flexible printed circuit.
Abstract:
A chip part includes a substrate, a first electrode and a second electrode which are formed apart from each other on the substrate and a circuit network which is formed between the first electrode and the second electrode. The circuit network includes a first passive element including a first conductive member embedded in a first trench formed in the substrate and a second passive element including a second conductive member formed on the substrate outside the first trench.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
The present disclosure relates to a method for manufacturing a printed circuit board. The method includes the steps as follows. First, a substrate including a base layer and a copper foil layer on a surface of the base layer is provided. Second, a conductive layer is formed on portions of the copper foil layer. Third, portions of the copper foil layer exposed from the conductive layer are removed by an etching process, and the conductive layer is thinner by the etching process. The reserved portions of the copper foil layer and the conductive layer form a conductive pattern to obtain a printed circuit board without plating wires. A printed circuit board without plating wires made by the above method is also provided.
Abstract:
A method of forming a high-conductivity electrical interconnect on a substrate may include forming a graphene film with a plurality of graphene members, depositing a metal over the graphene film, and providing a metallic overlay that connects the plurality of graphene members together through the depositing operation to form a covered graphene film.
Abstract:
Provided is a stretchable wire including: a stretchable solid-phase conductive structure; a stretchable insulation layer which surrounds the solid-phase conductive structure; and a liquid-phase conductive material layer disposed between the solid-phase conductive structure and the stretchable insulation layer, and in contact with the solid-phase conductive structure, and a method of fabricating the same.
Abstract:
A light source module includes at least one light source emitting light, and a body supporting the light source. The body includes a heat sink supporting the light source on a top surface thereof, an electrical insulating part provided on the heat sink, and a plating part provided on the insulating part. The plating part includes a contact heat dissipation part contacting a portion of a bottom surface of the light source to receive heat generated from the light source, and a diffusion heat dissipation part connected to the contact heat dissipation part for receiving heat from the contact heat dissipation part to discharge the heat to the heat sink. Accordingly, quick heat dissipation is performed.
Abstract:
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.
Abstract:
A solution comprising a palladium compound and a polyaminocarboxylic compound has been found to be suitable as a bath for electroless plating of palladium onto copper. Use of such a solution produces a plated component comprising a copper surface and a palladium plated coating having a thickness of between 0.01 micrometers (μm) and 5 μm. A method for electroless plating of palladium onto a copper surface of a component includes preparing a bath having a palladium compound and a polyaminocarboxylic compound. The copper component is submerged in the bath to plate a palladium layer on the copper surface of the component. The component resulting from the plating method has a palladium layer plated on the copper surface.