Abstract:
An electronic package is provided, including: a first substrate having a first insulating portion; a first electronic component disposed on the first substrate; a second substrate having a second insulating portion and stacked on the first substrate through a plurality of conductive elements; and a first encapsulant formed between the first substrate and the second substrate. The first insulating portion of the first substrate differs in rigidity from the second insulating portion of the second substrate. As such, during a high temperature process, one of the first substrate and the second substrate pulls at the other to bend toward the same direction, thereby reducing warpage deviation of the overall electronic package. The present invention further provides a method for fabricating the electronic package.
Abstract:
An electronic package and a method for fabricating the same are provided. The method includes forming an antenna structure in contact with one side of a circuit structure of a packaging substrate, and disposing an electronic component on the other side of the circuit structure. As such, the antenna structure is integrated with the packaging substrate, thereby reducing the thickness of the electronic package and improving the efficiency of the antenna structure.
Abstract:
An electronic package is provided, including: a first substrate having a first insulating portion; a first electronic component disposed on the first substrate; a second substrate having a second insulating portion and stacked on the first substrate through a plurality of conductive elements; and a first encapsulant formed between the first substrate and the second substrate. The first insulating portion of the first substrate differs in rigidity from the second insulating portion of the second substrate. As such, during a high temperature process, one of the first substrate and the second substrate pulls at the other to bend toward the same direction, thereby reducing warpage deviation of the overall electronic package. The present invention further provides a method for fabricating the electronic package.
Abstract:
A semiconductor package structure and a method of fabricating the same are provided. The semiconductor package structure includes a package body having opposing first and second surfaces; a plurality of first conductive pads and a plurality of second conductive pads formed on the first surface of the package body; a semiconductor component embedded in the package body and electrically connected to the first conductive pads; and a plurality of conductive elements embedded in the package body, each of the conductive elements having a first end electrically connected to a corresponding one of the second conductive pads and a second end opposing the first end and exposed from the second surface of the package body. Since the semiconductor component is embedded in the package body, the thickness of the semiconductor package structure is reduced.
Abstract:
A package structure is provided, including: a board having a plurality of conductive traces; a plurality of conductive pads formed on the board and each having a height greater than a height of each of the conductive traces; and an electronic component disposed on and electrically connected to the conductive pads via a plurality of conductive elements, wherein at least one of the conductive traces is positioned in proximity of at least one of the conductive pads. Therefore, the conductive elements are prevented from being in contact with the conductive traces, and the problem that the conductive pads and the conductive traces are shorted is solved. The present invention further provides a method for fabricating the packaging substrate.
Abstract:
The present invention provides a package structure with an embedded electronic component and a method of fabricating the package structure. The method includes: forming a first wiring layer on a carrier; removing the carrier and forming the first wiring layer on a bonding carrier; disposing an electronic component on the first wiring layer; forming an encapsulating layer, a second wiring layer and an insulating layer on the first wiring layer; disposing a chip on the electronic component and the second wiring layer; and forming a covering layer that covers the chip. The present invention can effectively reduce the thickness of the package structure and the electronic component without using adhesives.
Abstract:
A package substrate and a method of fabricating the same are provided. The method includes providing a substrate body having a first surface, a second surface opposing the first surface, a plurality of first electrical connecting pads disposed on the first surface; mounting a metal board on the first electrical connecting pads; and patterning the metal board so as to define a plurality of metal pillars corresponding to the first electrical connecting pads. Therefore, drawbacks of raw edges and unequal heights of the metal pillars can be obviated.
Abstract:
A semiconductor package is provided, which includes: a first dielectric layer having opposite first and second surfaces and a cavity penetrating the first and second surfaces; a first circuit layer embedded in the first dielectric layer and exposed from the first surface of the first dielectric layer; at least an adhesive member formed in the cavity and adjacent to the first surface of the first dielectric layer; an electronic element disposed on the adhesive member; a second dielectric layer formed on the second surface of the first dielectric layer and in the cavity to encapsulate the adhesive member and the electronic element; a second circuit layer formed on the second dielectric layer; and a plurality of conductive vias formed in the second dielectric layer for electrically connecting the second circuit layer and the electronic element, thereby reducing the package size and cost and increasing the wiring space and flexibility.
Abstract:
A package structure is disclosed, which includes: a first substrate; a build-up layer formed on and electrically connected to the first substrate and having a cavity; at least an electronic element disposed in the cavity and electrically connected to the first substrate; a stack member disposed on the build-up layer so as to be stacked on the first substrate; and an encapsulant formed between the build-up layer and the stack member. The build-up layer facilitates to achieve a stand-off effect and prevent solder bridging.
Abstract:
An electronic package and a method for fabricating the same are provided. The method includes forming an antenna structure in contact with one side of a circuit structure of a packaging substrate, and disposing an electronic component on the other side of the circuit structure. As such, the antenna structure is integrated with the packaging substrate, thereby reducing the thickness of the electronic package and improving the efficiency of the antenna structure.