Abstract:
A wearable robot includes a mechanism unit for assisting an wearer of the wearable robot in walking motion; a detection unit equipped on the wearer's body for detecting a moving direction of an arm of the wearer; and a controller for determining a walking intent of the wearer based on the moving direction of the arm of the wearer detected by the detection unit, and controlling the mechanism unit to produce auxiliary torque corresponding to the determined walking intent.
Abstract:
A apparatus includes an a exoskeleton system with a plurality of sensors for generating signals indicating a current motion and a current arrangement of at least the exoskeleton system, a hip segment, and at least one lower limb. The lower limb includes thigh and shank segments for coupling to a lateral surface of a user's leg. The thigh segment includes a first powered joint coupling the thigh segment to the hip segment, a second powered joint coupling the thigh segment to the shank segment, and a controller coupled to the sensors, the first powered joint, and the second powered joint. The controller is configured for determining a current state of the exoskeleton system and a current intent of the user based on the signals and generating control signals for the first and second powered joints based on the current state and the current intent.
Abstract:
The proposed apparatus and method relate to restorative sports medicine and patient rehabilitation with neurological motoric disorders. A patient is positioned in equilibrium by suspension devices for patient's body parts. The suspension devices are moved by actuating mechanisms with an electro-pneumatic drive and actuating components, controlled by a programmed computer, motivating the patient by controlling an object in a virtual gaming environment, to restore movements when there is an initially minimal or a complete absence of physical activity. The effectiveness is judged according to the reduction of energy consumption of the drives. The apparatus includes a base composed of two parallel guides with movable crossbars, on which the actuating mechanisms are pairwise movably arranged, monitoring and control units, the computer, sensors detecting the state of the actuating mechanisms, and power sources. There are units for analyzing the energy consumption of each drive and for assessing the treatment results.
Abstract:
A control method of a walking assist robot, may include: estimating a wearer's location on a map including walking environment information; determining a walking environment in a direction in which the wearer moves; and selecting a control mode for assisting the wearer's walking according to the walking environment.
Abstract:
A leg lift walking aid for assisting a person with limit leg functionality is provided. The leg lift walking aid comprises a waist band suitable for wearing around a use and a foot plate capable of being placed under a foot of the user. A pair of straps between the waist band and foot plate are provided wherein each strap comprises at least one flexible portion and at least one non-flexible portion. A central band, suitable for wearing on a leg below a knee of a user comprises at least one guide wherein the guide receives at least one strap and preferably slidably.
Abstract:
An apparatus includes at least one supernumerary artificial limb and a base structure configured to couple with a human body. The base structure includes a sensor that obtains a measurement regarding load of the human body. The proximal end of the supernumerary artificial limb is coupled to the base structure. The apparatus further includes a processor operatively coupled with the sensor and configured to receive the measurement from the sensor. The processor is also configured to generate a control signal to change at least one of a position of the supernumerary artificial limb and a torque exerted by the supernumerary artificial limb based on the measurement regarding the load.
Abstract:
An exoskeleton comprises a torso brace, configured to be coupled to a torso of a user, and a leg support, configured to be coupled to a leg of the user. A plurality of links couples the torso brace to the leg support. The plurality of links includes a first link, coupled to the torso brace at a first pivot point, and a second link, coupled to the leg support at a second pivot point. The first link is coupled to the second link through a third pivot point located between the first and second pivot points. The first pivot point enables adduction of the leg support, and the third pivot point enables abduction of the leg support.
Abstract:
A system for coupling a user to a support apparatus includes a harness for the user, a hoist, and frame. The harness and the hoist have co-operable attachment means for releasably coupling the harness to the hoist. The frame is configured to receive the user, where the harness and the frame have co-operable attachment means for releasably coupling the harness to the frame.
Abstract:
The present disclosure provides a walk assist robot for lower body walking of a walking trainee, including a joint angle signal measurement unit disposed on a joint of the walking trainee, an electromyogram (EMG) signal measurement unit disposed on a muscle related to ankle joint extension of the walking trainee, a plantar pressure signal measurement unit disposed on a sole of the walking trainee, and a control unit to recognize signals measured from the joint angle signal measurement unit, the EMG signal measurement unit and the plantar pressure signal measurement unit and process the signals to recognize a walking speed intention of the walking trainee, wherein the control unit controls a walking speed of the walk assist robot from the walking speed intention of the walking trainee.
Abstract:
The invention comprises a raised platform having a vibrator pad embedded therein. The platform has a ramp at its forward end and a raised platform portion extending forwardly from the forward end of the ramp. The vibrator pad is embedded in the raised platform portion. A vertically adjustable handrail is provided at the opposite sides of the platform. A plurality of patient restraint members are provided to enable a person to stand upright on the vibrator pad.