Abstract:
A photocatalyst and a method for producing hydrogen and oxygen from water by photocatalytic electrolysis are disclosed. The photocatalyst includes a photoactive material and metal or metal alloy material (15)—e.g. pure particles or alloys of Au, Pd and Ag—capable of having plasmon resonance properties deposited on the surface of the photoactive material. The photoactive material includes a p-n junction (17) formed by contact of a n-type semiconductor material (10), such as mixed phase TiO2 nano particles (anatase to rutile ratio of 1.5 to 1 or greater), and a p-type semiconductor material (16), such as CoO or Cu2O.
Abstract:
A catalyst for performing carbon dioxide reforming of methane to produce syngas, that includes cobalt, nickel and magnesium oxides disposed a support.
Abstract:
A catalyst for catalytic reactors of which the outer shape is a helix with n blades, where n is greater than or equal to 1, wherein the stack void fraction percentage is between 75% and 85% and the surface area/volume ratio is greater than 1000 square meters/square meters.
Abstract:
Hydrocracking catalysts and hydrocracking processes for the selective production of lube base stocks are disclosed. The hydrocracking catalyst contains a low acidity, highly dealuminated USY zeolite having a zeolite acid site density of from 1 to 100 micromole/g, a catalyst support, and one or more metals. The hydrocracking catalysts can maximize lube base stock yield while providing for effective impurity removal and VI enhancement at lower hydrocracking conversions.
Abstract:
Disclosed is a catalyst capable of producing benzene from ethanol comprising a titanium dioxide support, gold nanostructures dispersed on the surface of the titanium dioxide support, and ethanol adsorbed onto the surface of the titanium dioxide support, wherein the catalyst is capable of producing benzene from the adsorbed ethanol such that the benzene carbon yield from the adsorbed ethanol is at least 10% when the catalyst is heated to a temperature of 350 to 700 K.
Abstract:
A new crystalline molecular sieve designated SSZ-95 is disclosed. In general, SSZ-95 is synthesized from a reaction mixture suitable for synthesizing MTT-type molecular sieves and maintaining the mixture under crystallization conditions sufficient to form product. The product molecular sieve is subjected to a pre-calcination step, and ion-exchange to remove extra-framework cations, and a post-calcination step. The molecular sieve has a MTT-type framework and a H-D exchangeable acid site density of 0 to 50% relative to molecular sieve SSZ-32.
Abstract:
A catalyst including cobalt, a carrier including silica, and a selective promoter including zirconium. The cobalt and the selective promoter are disposed on the surface of the carrier, and the outer surfaces of the active component cobalt and the selective promoter zirconium are coated with a shell layer including a mesoporous material. A method for preparing the catalyst, including: 1) soaking the carrier including silica into an aqueous solution including a zirconium salt, aging, drying, and calcining a resulting mixture to yield a zirconium-loaded carrier including silica; 2) soaking the zirconium-loaded carrier including silica into an aqueous solution including a cobalt salt, aging, drying, calcining a resulting mixture to yield a primary cobalt-based catalyst; 3) preparing a precursor solution of a mesoporous material; and 4) soaking the primary cobalt-based catalyst into the precursor solution of the mesoporous material; and crystalizing, washing, drying, and calcining a resulting mixture.
Abstract:
A method of making a high activity catalyst composition suitable for use in the hydrodesulfurization of a middle distillate feed, such as diesel fuel, having a high concentration of sulfur, to thereby provide a low sulfur middle distillate product. The method comprises heat treating aluminum hydroxide under controlled temperature conditions thereby converting the aluminum hydroxide to gamma-alumina to give a converted aluminum hydroxide, and controlling the fraction of converted aluminum hydroxide that is gamma-alumina. A catalytic component is incorporated into the converted aluminum hydroxide to provide an intermediate, which is heat treated to provide the high activity catalyst composition. The high activity catalyst composition can suitably be used in the hydrodesulfurization of a middle distillate feed containing a high sulfur concentration.
Abstract:
Methods for activating the surface of steel alloys to produce catalytic substrates for the synthesis of carbon nanomaterials by chemical vapor deposition are provided. Steel alloy substrates in a variety of forms are activated by brief (10 sec to 30 min) pre-treatment at high temperature (600-1000° C.) in an oxidizing environment (e.g., air) to activate the catalyst. Upon high temperature oxidative treatment, the initially smooth and protective chromium oxide coating layer of the steel alloy is destroyed, and the catalyst surface roughness progressively increases. Upon exposure of the pre-treated SS substrates to pyrolyzed hydrocarbon gases in nitrogen, carbon nanotubes are readily formed, and their diameters correlate with substrate surface roughness. Forests of vertically aligned nanotubes can be prepared with the method.
Abstract:
There is provided a process of treating a heavy hydrocarbon-comprising material, comprising: contacting a feed material with at least a catalyst material within a contacting zone to effect generation of a total product such that a contacting zone material is disposed within the contacting zone and consists of the catalyst material and a feed/product-comprising mixture comprising the feed material and the total product, wherein the feed/product-comprising mixture includes a Conradson carbon residue content of at least 12 weight percent, based on the total weight of the feed/product-comprising mixture, and also includes an asphaltene content of less than two (2) weight percent, based on the total weight of the feed/product-comprising mixture, and wherein the feed material includes deasphalted heavy hydrocarbon-comprising material. A heavy hydrocarbon-containing feed for a catalytic hydroprocessing or catalytic hydrocracking process is also provided, wherein the feed comprises a deasphalted heavy hydrocarbon-comprising material having a Conradson carbon residue, CCR, content greater than about 12 wt % and an asphaltene content less than about 2 wt %. The feed results in reduced catalyst deactivation or catalyst coking during the catalytic hydroprocessing or catalytic hydrocracking process.