In-flight reconfigurable hybrid unmanned aerial vehicle
    21.
    发明授权
    In-flight reconfigurable hybrid unmanned aerial vehicle 有权
    飞行中可重构混合无人机

    公开(公告)号:US09550567B1

    公开(公告)日:2017-01-24

    申请号:US14524956

    申请日:2014-10-27

    Abstract: This disclosure is directed to an unmanned aerial vehicle (“UAV”) that transitions in-flight between vertical flight configuration and horizontal flight configuration by changing an orientation of the UAV by approximately ninety degrees. The UAV may include propulsion units that are coupled to a wing. The wing may include wing segments rotatably coupled together by pivots that rotate to position the propulsion units around a center of mass of the UAV when the fuselage is oriented perpendicular with the horizon. In this vertical flight configuration, the UAV may perform vertical flight or hover. During the vertical flight, the UAV may cause the wing to extend outward via the pivots such that the wing segments become positioned substantially parallel to one another and the wing resembles a conventional fixed wing. With the wing extended, the UAV assumes a horizontal flight configuration that provides upward lift generated from the wing.

    Abstract translation: 本公开涉及通过将UAV的方向改变大约九十度而在垂直飞行构型和水平飞行构型之间转换的无人驾驶飞行器(“UAV”)。 无人机可以包括联接到机翼的推进单元。 机翼可以包括通过枢转可旋转地联接在一起的翼段,当机身垂直于水平线时,枢轴旋转以将推进单元围绕UAV的质心定位。 在这种垂直飞行配置中,无人机可以执行垂直飞行或悬停。 在垂直飞行期间,UAV可以使机翼经由枢轴向外延伸,使得机翼段基本上彼此平行地定位,并且翼类似于常规的固定翼。 在机翼延伸的情况下,UAV采取水平飞行配置,提供从机翼产生的向上升力。

    Unmanned aerial vehicle landing interface
    22.
    发明授权
    Unmanned aerial vehicle landing interface 有权
    无人机登陆界面

    公开(公告)号:US09499265B2

    公开(公告)日:2016-11-22

    申请号:US14815930

    申请日:2015-07-31

    Applicant: Skycatch, Inc.

    Abstract: The present disclosure is directed toward systems and methods for autonomously landing an unmanned aerial vehicle (UAV). In particular, systems and methods described herein enable a UAV to land within and interface with a UAV ground station (UAVGS). In particular, one or more embodiments described herein include systems and methods that enable a UAV to conveniently interface with and land within a UAV ground station (UAVGS). For example, one or more embodiments include a UAV that includes a landing base and landing frame that interfaces with a landing housing of a UAVGS.

    Abstract translation: 本公开涉及用于自主着陆无人机(UAV)的系统和方法。 特别地,本文描述的系统和方法使得UAV能够落在UAV地面站(UAVGS)内并与UAV地面站(UAVGS)接合。 特别地,本文描述的一个或多个实施例包括使无人机能够方便地与UAV地面站(UAVGS)接口并落在其中的系统和方法。 例如,一个或多个实施例包括UAV,其包括与UAVGS的着陆壳体接合的着陆基座和着陆架。

    CONTACTLESS CHARGER AND BATTERY MANAGEMENT
    24.
    发明申请
    CONTACTLESS CHARGER AND BATTERY MANAGEMENT 审中-公开
    无缝充电和电池管理

    公开(公告)号:US20160311329A1

    公开(公告)日:2016-10-27

    申请号:US15133189

    申请日:2016-04-19

    Abstract: An apparatus comprising a contactless battery synchronous power and a battery management system (BSP-BMS) is disclosed. This system includes a battery monitoring unit for monitoring the state of the batteries and a synchronous power unit for controlling the intensity and direction of current during both, charging and discharging processes, including one or several opto-inductive discs for the wireless energy transfer and fast and a lightweight communication scheme. The full system disclosed in this invention is very small in size, lightweight, cost effective and reliable due to its scalable structure, easy parallelization of current control elements and paths, and local and reliable opto-inductive coupling. The invention is aimed at universal, fast and automated charge processes and internal stored energy management for unmanned autonomous vehicles (UAVs) but it can be an effective solution for manned electric vehicles like electric bikes, electric motorcycles or other electric powered vehicles.

    Abstract translation: 公开了一种包括非接触式电池同步电力和电池管理系统(BSP-BMS)的装置。 该系统包括用于监视电池状态的电池监视单元和用于在两个充电和放电过程中控制电流的强度和方向的同步电力单元,包括用于无线能量传输的一个或多个光电感盘,并且快速 和轻量级通信方案。 本发明公开的完整系统由于其可扩展的结构,电流控制元件和路径的简单并行化以及局部可靠的光电耦合而具有体积小,重量轻,成本有效和可靠的特点。 本发明的目的在于通用,快速和自动化的充电过程以及对无人驾驶自动车辆(UAV)的内部存储能量管理,但它可以成为电动自行车,电动摩托车或其他电动车辆等载人电动车辆的有效解决方案。

    Multirotor mobile buoy for persistent surface and underwater exploration
    25.
    发明授权
    Multirotor mobile buoy for persistent surface and underwater exploration 有权
    多旋转移动浮标用于持续的表面和水下探测

    公开(公告)号:US09457900B1

    公开(公告)日:2016-10-04

    申请号:US15073831

    申请日:2016-03-18

    Abstract: A multirotor mobile buoy combining MR-VTOL capability with environmentally hardened electronics, exchangeable sensor suites, and a solar recharge system and providing sensing in aquatic environments. The multirotor mobile buoy provides for the detection, classification and location of underwater objects using self-contained electronics, and repositions with aerial means using a plurality of rotors. The multirotor mobile buoy additionally incorporates solar panels for recharging of on-board batteries enabling the flight and other functions, and comprises a buoyant assembly and extended tether in order to promote stability in dynamic, open ocean environments. The multirotor mobile buoy may be employed singly or as a swarm of underwater detection platforms, and may utilize its positioning ability to optimize the effectiveness of sonobuoy systems arrayed as a distributed sensor field.

    Abstract translation: 将MR-VTOL功能与环境恶化的电子设备,可更换传感器套件和太阳能充电系统相结合的多旋转移动浮标,并在水环境中提供感测。 多转轮移动浮标提供使用独立电子设备的水下物体的检测,分类和定位,以及使用多个转子重新定位与天线装置。 多转轮移动浮标还包括用于为板载电池充电以实现飞行和其他功能的太阳能电池板,并且包括浮力组件和延伸系绳,以促进在动态,开阔的海洋环境中的稳定性。 多旋转移动浮标可以单独使用或作为一群水下检测平台使用,并且可以利用其定位能力来优化作为分布式传感器场排列的声波系统的有效性。

    Tethercraft
    26.
    发明申请
    Tethercraft 审中-公开

    公开(公告)号:US20160194080A1

    公开(公告)日:2016-07-07

    申请号:US14986562

    申请日:2015-12-31

    Applicant: David Webb

    Inventor: David Webb

    Abstract: A Tethercraft is a type of UAV coupled to a Lead Aerial Vehicle (LAV) forming a single aerial vehicle operated by a single flight crew thereby increasing cargo capacity and vehicle capability. Automated Flight Control Systems (AFCS) in both the Tethercraft and LAV provide the capability to ‘lock’ a Tethercraft in specific positions relative to its LAV for flight operations such as, but not limited to, takeoff, cruising, and landing. The LAV provides all (towing), some (assisted towing), or none (navigation only) of the propulsion for a Tethercraft depending on the embodiment.A Tethercraft might be positioned closer to the LAV during takeoffs and landings and further away from the LAV during cruising in order to maintain optimum efficiency.A tether can be any rigid, non-rigid, electronic, or other means of coupling two aerial vehicles. Some embodiments might use a means to change the length of the tether such as a winch. Other embodiments might use a fixed-length tether or other means of coupling.

    Abstract translation: Tethercraft是一种无人机,与一架引导型空中飞行器(LAV)相结合,形成由单个机组人员操作的单个飞行器,从而提高货物能力和车辆能力。 Tethercraft和LAV中的自动飞行控制系统(AFCS)提供了在相对于其LAV的特定位置“锁定”Tethercraft的能力,用于飞行操作,例如但不限于起飞,巡航和着陆。 根据实施例,LAV为Tethercraft的推进提供所有(牵引),一些(辅助牵引)或无(仅导航)。 在起飞和着陆期间,Tethercraft可能位于LAV附近,并在巡航期间远离LAV,以保持最佳效率。 系绳可以是任何刚性,非刚性,电子或其他联接两架飞行器的手段。 一些实施例可以使用改变诸如绞车的系绳长度的方法。 其他实施例可以使用固定长度的系绳或其他联接装置。

    Deep Stall Aircraft Landing
    27.
    发明申请
    Deep Stall Aircraft Landing 有权
    深停机飞机着陆

    公开(公告)号:US20160163206A1

    公开(公告)日:2016-06-09

    申请号:US14936632

    申请日:2015-11-09

    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.

    Abstract translation: 定义直立方向和倒置方向的飞机,地面站; 以及用于远程控制飞机飞行的控制系统。 地面站具有自动地面功能,使飞机以反方向反转,失速和可控地降落,以保护从飞机向下延伸的有效载荷和舵。 在直立方向,地面站描绘从第一架飞机摄像机的视图。 当切换到倒置方向时:(1)地面站描绘从第二架飞机照相机的视图,(2)飞机切换红色和绿色翼灯的颜色,将副翼延伸为反转翼片,(3) 控制系统适应地面站控制器的倒置方向。 飞机起落架是当飞机处于直立方向时位于机翼上方的扩展的聚丙烯垫。

    OPTICALLY ASSISTED LANDING OF AUTONOMOUS UNMANNED AIRCRAFT
    28.
    发明申请
    OPTICALLY ASSISTED LANDING OF AUTONOMOUS UNMANNED AIRCRAFT 审中-公开
    自愿协调的自动无人驾驶飞机着陆

    公开(公告)号:US20160122038A1

    公开(公告)日:2016-05-05

    申请号:US14631520

    申请日:2015-02-25

    Abstract: Systems, methods, apparatuses, and landing platforms are provided for visual and/or ground-based landing of unmanned aerial vehicles. The unmanned aerial vehicles may be capable of autonomously landing. Autonomous landings may be achieved by the unmanned air vehicles with the use of an imager and one or more optical markers on a landing platform. The optical markers may be rectilinear, monochromatic patterns that may be detected by a computing system on the unmanned aerial vehicle. Furthermore, the unmanned aerial vehicle may be able to automatically land by detecting one or more optical markers and calculating a relative location and/or orientation from the landing platform.

    Abstract translation: 提供系统,方法,设备和着陆平台,用于无人驾驶飞行器的视觉和/或地面着陆。 无人驾驶飞行器可以自主着陆。 自主着陆可以通过使用成像器的无人驾驶飞行器和在着陆平台上的一个或多个光学标记来实现。 光学标记可以是可由无人驾驶飞行器上的计算系统检测的直线单色图案。 此外,无人驾驶飞行器可以通过检测一个或多个光学标记并计算来自着陆平台的相对位置和/或取向来自动着陆。

    VEHICLE FOR AERONAUTIC OPERATION AND SUBMERSED OPERATION
    29.
    发明申请
    VEHICLE FOR AERONAUTIC OPERATION AND SUBMERSED OPERATION 审中-公开
    用于航空操作和分包操作的车辆

    公开(公告)号:US20160031275A1

    公开(公告)日:2016-02-04

    申请号:US14449963

    申请日:2014-08-01

    Abstract: Vehicle for aeronautic operation and submersed operation includes members secured to rotors and a body, the members having adjustable features arranged and disposed to position the rotors to rotate in a first plane during the aeronautic operation and a second plane during the submersed operation, a fluid enclosure operably connected through the body to the rotor, the fluid enclosure having a submersion mechanism arranged and disposed for the vehicle to adjustably ascend and descend during the submersed operation of the vehicle, and a control system and power system for operably controlling the rotor, the adjustable feature, and/or the fluid enclosure. The rotor is configured to move the vehicle during the aeronautic operation and the submersed operation. A process includes operating the vehicle in the aeronautic operation and the submersed operation.

    Abstract translation: 用于航空操作和浸没操作的车辆包括固定到转子和主体的构件,所述构件具有可调整的特征,其布置和设置成在转向器的运行期间在第一平面中定位转子并且在浸没操作期间具有第二平面, 可操作地通过本体连接到转子,流体外壳具有布置和设置用于车辆在潜入式操作期间可调节地上升和下降的浸入机构,以及用于可操作地控制转子的控制系统和动力系统, 特征和/或流体外壳。 转子构造成在航空操作和浸没操作期间移动车辆。 一个过程包括在航空操作和潜水操作中操作车辆。

    Deep stall aircraft landing
    30.
    发明授权
    Deep stall aircraft landing 有权
    深停飞机着陆

    公开(公告)号:US09208689B2

    公开(公告)日:2015-12-08

    申请号:US13261814

    申请日:2012-08-16

    Abstract: An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.

    Abstract translation: 定义直立方向和倒置方向的飞机,地面站; 以及用于远程控制飞机飞行的控制系统。 地面站具有自动地面功能,使飞机以反方向反转,失速和可控地降落,以保护从飞机向下延伸的有效载荷和舵。 在直立方向,地面站描绘从第一架飞机摄像机的视图。 当切换到倒置方向时:(1)地面站描绘从第二架飞机照相机的视野,(2)飞机切换红色和绿色翼灯的颜色,延伸副翼作为倒转襟翼,(3) 控制系统适应地面站控制器的倒置方向。 飞机起落架是当飞机处于直立方向时位于机翼上方的扩展的聚丙烯垫。

Patent Agency Ranking