Abstract:
This disclosure is directed to an unmanned aerial vehicle (“UAV”) that transitions in-flight between vertical flight configuration and horizontal flight configuration by changing an orientation of the UAV by approximately ninety degrees. The UAV may include propulsion units that are coupled to a wing. The wing may include wing segments rotatably coupled together by pivots that rotate to position the propulsion units around a center of mass of the UAV when the fuselage is oriented perpendicular with the horizon. In this vertical flight configuration, the UAV may perform vertical flight or hover. During the vertical flight, the UAV may cause the wing to extend outward via the pivots such that the wing segments become positioned substantially parallel to one another and the wing resembles a conventional fixed wing. With the wing extended, the UAV assumes a horizontal flight configuration that provides upward lift generated from the wing.
Abstract:
The present disclosure is directed toward systems and methods for autonomously landing an unmanned aerial vehicle (UAV). In particular, systems and methods described herein enable a UAV to land within and interface with a UAV ground station (UAVGS). In particular, one or more embodiments described herein include systems and methods that enable a UAV to conveniently interface with and land within a UAV ground station (UAVGS). For example, one or more embodiments include a UAV that includes a landing base and landing frame that interfaces with a landing housing of a UAVGS.
Abstract:
Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
Abstract:
An apparatus comprising a contactless battery synchronous power and a battery management system (BSP-BMS) is disclosed. This system includes a battery monitoring unit for monitoring the state of the batteries and a synchronous power unit for controlling the intensity and direction of current during both, charging and discharging processes, including one or several opto-inductive discs for the wireless energy transfer and fast and a lightweight communication scheme. The full system disclosed in this invention is very small in size, lightweight, cost effective and reliable due to its scalable structure, easy parallelization of current control elements and paths, and local and reliable opto-inductive coupling. The invention is aimed at universal, fast and automated charge processes and internal stored energy management for unmanned autonomous vehicles (UAVs) but it can be an effective solution for manned electric vehicles like electric bikes, electric motorcycles or other electric powered vehicles.
Abstract:
A multirotor mobile buoy combining MR-VTOL capability with environmentally hardened electronics, exchangeable sensor suites, and a solar recharge system and providing sensing in aquatic environments. The multirotor mobile buoy provides for the detection, classification and location of underwater objects using self-contained electronics, and repositions with aerial means using a plurality of rotors. The multirotor mobile buoy additionally incorporates solar panels for recharging of on-board batteries enabling the flight and other functions, and comprises a buoyant assembly and extended tether in order to promote stability in dynamic, open ocean environments. The multirotor mobile buoy may be employed singly or as a swarm of underwater detection platforms, and may utilize its positioning ability to optimize the effectiveness of sonobuoy systems arrayed as a distributed sensor field.
Abstract:
A Tethercraft is a type of UAV coupled to a Lead Aerial Vehicle (LAV) forming a single aerial vehicle operated by a single flight crew thereby increasing cargo capacity and vehicle capability. Automated Flight Control Systems (AFCS) in both the Tethercraft and LAV provide the capability to ‘lock’ a Tethercraft in specific positions relative to its LAV for flight operations such as, but not limited to, takeoff, cruising, and landing. The LAV provides all (towing), some (assisted towing), or none (navigation only) of the propulsion for a Tethercraft depending on the embodiment.A Tethercraft might be positioned closer to the LAV during takeoffs and landings and further away from the LAV during cruising in order to maintain optimum efficiency.A tether can be any rigid, non-rigid, electronic, or other means of coupling two aerial vehicles. Some embodiments might use a means to change the length of the tether such as a winch. Other embodiments might use a fixed-length tether or other means of coupling.
Abstract:
An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.
Abstract:
Systems, methods, apparatuses, and landing platforms are provided for visual and/or ground-based landing of unmanned aerial vehicles. The unmanned aerial vehicles may be capable of autonomously landing. Autonomous landings may be achieved by the unmanned air vehicles with the use of an imager and one or more optical markers on a landing platform. The optical markers may be rectilinear, monochromatic patterns that may be detected by a computing system on the unmanned aerial vehicle. Furthermore, the unmanned aerial vehicle may be able to automatically land by detecting one or more optical markers and calculating a relative location and/or orientation from the landing platform.
Abstract:
Vehicle for aeronautic operation and submersed operation includes members secured to rotors and a body, the members having adjustable features arranged and disposed to position the rotors to rotate in a first plane during the aeronautic operation and a second plane during the submersed operation, a fluid enclosure operably connected through the body to the rotor, the fluid enclosure having a submersion mechanism arranged and disposed for the vehicle to adjustably ascend and descend during the submersed operation of the vehicle, and a control system and power system for operably controlling the rotor, the adjustable feature, and/or the fluid enclosure. The rotor is configured to move the vehicle during the aeronautic operation and the submersed operation. A process includes operating the vehicle in the aeronautic operation and the submersed operation.
Abstract:
An aircraft defining an upright orientation and an inverted orientation, a ground station; and a control system for remotely controlling the flight of the aircraft. The ground station has an auto-land function that causes the aircraft to invert, stall, and controllably land in the inverted orientation to protect a payload and a rudder extending down from the aircraft. In the upright orientation, the ground station depicts the view from a first aircraft camera. When switching to the inverted orientation: (1) the ground station depicts the view from a second aircraft camera, (2) the aircraft switches the colors of red and green wing lights, extends the ailerons to act as inverted flaps, and (3) the control system adapts a ground station controller for the inverted orientation. The aircraft landing gear is an expanded polypropylene pad located above the wing when the aircraft is in the upright orientation.