Abstract:
According to one embodiment, a pattern including first and second block phases is formed by self-assembling a block copolymer onto a film to be processed. The entire block copolymer present in a first region is removed under a first condition by carrying out energy beam irradiation and development, thereby leaving a pattern including the first and second block phases in a region other than the first region. The first block phase present in a second region is selectively removed under a second condition by carrying out energy beam irradiation and development, thereby leaving a pattern including the first and second block phases in an overlap region between a region other than the first region and a region other than the second region, and leaving a pattern of second block phase in the second region excluding the overlap region. The film is etched with the left patterns as masks.
Abstract:
A method of orienting microphase-separated domains is disclosed, comprising applying a composition comprising an orientation control component, and a block copolymer assembly component comprising a block copolymer having at least two microphase-separated domains in which the orientation control component is substantially immiscible with the block copolymer assembly component upon forming a film; and forming a compositionally vertically segregated film on the surface of the substrate from the composition. The orientation control component and block copolymer segregate during film forming to form the compositionally vertically-segregated film on the surface of a substrate, where the orientation control component is enriched adjacent to the surface of the compositionally segregated film adjacent to the surface of the substrate, and the block copolymer assembly is enriched at an air-surface interface.
Abstract:
Directionally oriented block copolymer films and zone annealing processes for producing directionally oriented block films are provided. The zone annealing processes include methods of inducing horizontally oriented block copolymers through a soft sheer process and methods of inducing vertically oriented block copolymers via sharp dynamic zone annealing. The zone annealing processes are capable of both small and large scale production of directionally oriented block films. The cold zone annealing processes are also capable of being combined with graphoepitaxy methods.
Abstract:
Methods are disclosed for reducing the number of defects in a directed self-assembled structure formed on a guiding pre-pattern (e.g., a chemical pre-pattern) on a substrate. A first layer comprising a first self-assembly material is applied onto the guiding pre-pattern, with the first self-assembly material forming domains whose alignment and orientation are directed by the guiding pre-pattern; as a result, a first self-assembled structure is formed. The first self-assembled structure is washed away, and a second layer comprising a second self-assembly material is then applied. The second self-assembly material forms a second self-assembled structure having fewer defects than the first self-assembled structure.
Abstract:
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
Abstract:
A method for preparing a patterned directed self-assembly layer for reducing directed self-assembly pattern defectivity using direct current superpositioning is provided. A substrate having a block copolymer layer overlying a first intermediate layer, said block copolymer layer comprising a first phase-separated polymer defining a first pattern and a second phase-separated polymer defining a second pattern in said block copolymer layer is provided. A first plasma etching process using plasma formed of a first process composition to remove said second phase-separated polymer while leaving behind said first pattern of said first phase-separated polymer is performed. A second plasma etching process to transfer said first pattern into said first intermediate layer using plasma formed of a second process composition is performed. In an embodiment, said first phase-separated polymer is exposed to an electron beam preceding, during, or following said first plasma etching process, or preceding or during said second plasma etching process.
Abstract:
The present invention relates to a method the synthesis and utilization of random, cross-linked, substituted polystyrene copolymers as polymeric cross-linked surface treatments (PXSTs) to control the orientation of physical features of a block copolymer deposited over the first copolymer. Such methods have many uses including multiple applications in the semiconductor industry including production of templates for nanoimprint lithography.
Abstract:
According to one embodiment, a pattern formation method includes forming a layer above an underlying layer. The layer includes a block copolymer. The method further includes forming a first phase including a first polymer and a second phase including a second polymer in the layer by phase-separating the block copolymer, and selectively removing the first phase by dry etching the layer using an etching gas including carbon monoxide.
Abstract:
Nano structure patterning formation includes coating a part of a structural guide with a hydrophobic polymer, positioning the structural guide on a substrate, coating at least a part of the substrate with a film made of a block copolymer, and annealing the film made of the block copolymer to align the block copolymer.
Abstract:
A substrate having an arrangement of self-assembling magnetic domains and a method of fabrication therefor. In some embodiments, a substrate is patterned with a plurality of chemically contrasted alignment features, and a block copolymer having a magnetic component and a non-magnetic component is deposited onto the substrate. The block copolymer self-assembles into a sequence of magnetic domains responsive to the alignment features. The period of the alignment features is between about 2 times and about 10 times the period of the magnetic domains.