Abstract:
Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
In an acoustic sensor, a diaphragm arranged on an upper side of a silicon substrate includes a back chamber, and an anchor supports the diaphragm. An insulating plate portion fixed to an upper surface of the silicon substrate covers the diaphragm with a gap. A conductive fixed electrode film arranged on a lower surface of the plate portion configures a back plate. The change in electrostatic capacitance between the fixed electrode film and the diaphragm outputs to the outside from a fixed side electrode pad and a movable side electrode pad as an electric signal. A protective film is arranged continuously with the plate portion at an outer periphery of the plate portion. The protective film covers the outer peripheral part of the upper surface of the silicon substrate, and the outer periphery of the protective film coincides with the outer periphery of the upper surface of the silicon substrate.
Abstract:
An integrated MEMS device and its manufacturing method are provided. In the manufacturing method, the sacrificial layer is used to integrate the MEMS wafer and the circuit wafer. The advantage of the present invention comprises preventing films on the circuit wafer from being damaged during process. By the manufacturing method, a mechanically and thermally stable structure material, for example: monocrystalline silicon and polysilicon, can be used. The integrated MEMS device manufactured can also possess the merit of planar top-surface topography with high fill factor. The manufacturing method is especially suitable for manufacturing MEMS array device.
Abstract:
Embodiments of mechanisms for forming a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a CMOS substrate and a MEMS substrate bonded with the CMOS substrate. The CMOS substrate includes a semiconductor substrate, a first dielectric layer formed over the semiconductor substrate, and a plurality of conductive pads formed in the first dielectric layer. The MEMS substrate includes a semiconductor layer having a movable element and a second dielectric layer formed between the semiconductor layer and the CMOS substrate. The MEMS substrate also includes a closed chamber surrounding the movable element. The MEMS substrate further includes a blocking layer formed between the closed chamber and the first dielectric layer of the CMOS substrate. The blocking layer is configured to block gas, coming from the first dielectric layer, from entering the closed chamber.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
A MEMS component includes a substrate in which at least one cavity is present. The cavity is closed off toward an active side of the substrate. An inactive side is arranged opposite the active side of the substrate, and the substrate is covered with a covering film on the inactive side.
Abstract:
Techniques for preventing bending/buckling of suspended micro/nanostructures during oxidation are provided. In one aspect, a method for oxidizing a structure is provided. The method includes providing the structure having at least one suspended element selected from the group consisting of: a microstructure, a nanostructure and a combination thereof; surrounding the at least one suspended element in a cladding material; and oxidizing the at least one suspended element through the cladding material, wherein the cladding material physically constrains and thereby prevents distortion of the at least one suspended element during the oxidation.
Abstract:
The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
Abstract:
In an acoustic sensor, a diaphragm arranged on an upper side of a silicon substrate includes a back chamber, and an anchor supports the diaphragm. An insulating plate portion fixed to an upper surface of the silicon substrate covers the diaphragm with a gap. A conductive fixed electrode film arranged on a lower surface of the plate portion configures a back plate. The change in electrostatic capacitance between the fixed electrode film and the diaphragm outputs to the outside from a fixed side electrode pad and a movable side electrode pad as an electric signal. A protective film is arranged continuously with the plate portion at an outer periphery of the plate portion. The protective film covers the outer peripheral part of the upper surface of the silicon substrate, and the outer periphery of the protective film coincides with the outer periphery of the upper surface of the silicon substrate.