Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
The present invention provides a single-crystal silicon pulling silica container including an outer layer made of opaque silica glass containing gaseous bubbles and an inner layer made of transparent silica glass that does not substantially contain the gaseous bubbles; the container also including: a bottom portion, a curved portion, and a straight body portion, wherein continuous grooves are formed on a surface of the inner layer from at least part of the bottom portion to at least part of the straight body portion through the curved portion. As a result, there are provided the single-crystal silicon pulling silica container that can reduce defects called voids or pinholes in the pulled single-crystal silicon and a method for manufacturing such a silica container.
Abstract:
An amplifier optical fiber comprising a central core of a dielectric matrix doped with at least one element ensuring the amplification of an optical signal transmitted in the fiber and a cladding surrounding the central core and suitable for confining the optical signal transmitted in the core. The fiber also comprises metallic nanostructures suitable for generating an electronic surface resonance in the dielectric matrix of central core, the wavelength of said electronic surface resonance corresponding to an excitation level of the element ensuring the amplification.
Abstract:
The present invention provides a TiO2-containing silica glass from which a transparent extremely low thermal expansion glass having excellent transparency and having a temperature region in which the coefficient of thermal expansion is substantially zero can be obtained. The present invention relates to a TiO2-containing silica glass for optical member for EUV lithography, having a TiO2 concentration of from 3 to 14% by mass; an internal transmittance per 1-mm thickness in a wavelength region of from 400 to 700 nm, T400-700, of 97% or more; and an internal transmittance per 1-mm thickness in a wavelength region of from 400 to 3,000 nm, T400-3,000, of 70% or more.
Abstract:
The present invention provides a TiO2-containing silica glass from which a transparent extremely low thermal expansion glass having excellent transparency and having a temperature region in which the coefficient of thermal expansion is substantially zero can be obtained. The present invention relates to a TiO2-containing silica glass for optical member for EUV lithography, having a TiO2 concentration of from 3 to 14% by mass; an internal transmittance per 1-mm thickness in a wavelength region of from 400 to 700 nm, T400-700, of 97% or more; and an internal transmittance per 1-mm thickness in a wavelength region of from 400 to 3,000 nm, T400-3000, of 70% or more.
Abstract:
The invention relates to an optical fibre comprising a gain medium which is equipped with: a core (22) which is formed from a transparent material and nanoparticles (24) comprising a doping element and at least one element for enhancing the use of said doping element; and an outer cladding (26) which surrounds the core. The invention is characterised in that the doping element is erbium (Er) and in that the enhancing element is selected from among antimony (Sb), bismuth (Bi) and a combination of antimony (Sb) and bismuth (Bi).According to the invention, one such fibre is characterised in that the size of the nanoparticles is variable and is between 1 and 500 nanometres inclusive, and preferably greater than 20 nm.
Abstract:
It is to obtain a silica glass suitable as a material for an optical material constituting an optical system to be used for EUVL, which has a low coefficient of thermal expansion from 0 to 100° C., and on which formation of concave defects is suppressed in a polishing step to achieve a high level of flatness. A silica glass containing from 0.1 to 10 mass % of Sn calculated as SnO2 and from 3 to 10 mass % of Ti calculated as TiO2, which has a homogeneity of the coefficient of thermal expansion from 0 to 100° C. to the temperature of from 50 to 200 ppb/° C., a coefficient of thermal expansion from 0 to 100° C. of 0±250 ppb/° C., and a Vickers hardness of at most 650.
Abstract:
High purity direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive direct deposit vitrified silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a dry direct deposit vitrified silicon oxyfluoride glass which exhibits very high transmittance in the vacuum ultraviolet (VUV) wavelength region while maintaining the excellent thermal and physical properties generally associated with high purity fused silica. In addition to containing fluorine and having little or no OH content, the inventive direct deposit vitrified silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm is also characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract translation:公开了适用于在190nm以下的VUV波长区域中用于光刻应用的光掩模基板的高纯度直接沉积玻璃化硅氧氟化物玻璃。 本发明的直接沉积玻璃化硅氧氟化物玻璃在157nm波长附近是透射的,使其特别适用于157nm波长区域的光掩模衬底。 本发明的光掩模基材是在真空紫外(VUV)波长区域中显示非常高的透射率的干直接沉积玻璃化硅氧氟化物玻璃,同时保持通常与高纯度熔融二氧化硅相关的优异的热和物理性能。 除了含氟并且具有很少或不具有OH含量之外,本发明的适用于157nm的光掩模衬底的玻璃化玻璃化氟氧化硅玻璃的特征还在于具有小于1×10 17分子/ cm 3的分子 氢和低氯水平。
Abstract:
A modified silica glass composition for providing a reduction in the multiphonon quenching for a rare-earth dopant comprising: SiO2 in a host material; a rare-earth dopant; a first SiO2 modifier; and a second SiO2 modifier; such that said first modifier and said second modifier reduce multiphonon quenching of the rare-earth dopant contained therein.
Abstract:
Methods and apparatus for adding metals such as aluminum to fused silica glass articles are disclosed. The methods and apparatus allow for controlled, low level addition of metals into fused silica glass articles. The fused silica glass articles containing added aluminum exhibit improved internal transmission and decreased absorption change when irradiated with a laser.