Abstract:
A chemically toughenable or toughened sheet-like glass article is provided. The article has a glass with a composition comprising Al2O3, SiO2, Li2O, and Na2O, wherein (Al2O3)−(Li2O+Na2O), in mol %, is less than 0; a thickness between 0.3 mm and 4 mm; a light transmittance of at least 0.001% to at most 60% at 450 nm, of at least 0.001% to at most 30% at 540 nm, and of at least 0.001% to at most 30% at 630 nm; and an IR transmittance of at least 10% to not more than 99% at any wavelength in a wavelength range from 900 nm to 1100 nm. The light and IR transmittances are determined for a thickness of the article of 1 mm.
Abstract:
A pelletized expanded glass material is provided, which is particularly suitable as a growth support for microorganisms, especially for use in a biogas plant or an anaerobic sewage treatment plant. The production process of the invention for the pelletized expanded glass material contains the steps of: mixing a ground glass, an expanding agent and a binder to give a starting mixture. The starting mixture is pelletized to give ground glass pellet green bodies. The ground glass pellet green bodies are foamed to give expanded glass pellet particles at temperatures of 600 to 950° C. Accordingly, especially in the production of the starting mixture, minerals and or trace elements are added, which serve especially for the nutrient supply of microorganisms used in the biogas plant or the anaerobic sewage treatment plant.
Abstract:
One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.
Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.
Abstract:
This disclosure is directed to a silica-titania-niobia glass and to a method for making the glass. The composition of the silica-titania-niobia (SiO2—TiO2—Nb2O5) glass, determined as the oxides, is Nb2O5 in an amount in the range of 0.005 wt. % to 1.2 wt. %, TiO2 in an amount in the range of 5 wt. % to 10 wt. %, and the remainder of glass is SiO2. In the method, the STN glass precursor is consolidated into a glass by heating to a temperature of 1600° C. to 1700° C. in flowing helium for 6 hours to 10 hours. When this temperature is reached, the helium flow can be replaced by argon for the remainder of the time. Subsequently the glass is cooled to approximately 1050° C., and then from 1050° C. to 700° C. followed by turning off the furnace and cooling the glass to room temperature at the natural cooling rate of the furnace.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
This disclosure is directed to a silica-titania-niobia glass and to a method for making the glass. The composition of the silica-titania-niobia (SiO2—TiO2—Nb2O5) glass, determined as the oxides, is Nb2O5 in an amount in the range of 0.005 wt. % to 1.2 wt. %, TiO2 in an amount in the range of 5 wt. % to 10 wt. %, and the remainder of glass is SiO2. In the method, the STN glass precursor is consolidated into a glass by heating to a temperature of 1600° C. to 1700° C. in flowing helium for 6 hours to 10 hours. When this temperature is reached, the helium flow can be replaced by argon for the remainder of the time. Subsequently the glass is cooled to approximately 1050° C., and then from 1050° C. to 700° C. followed by turning off the furnace and cooling the glass to room temperature at the natural cooling rate of the furnace.
Abstract:
A device amplifies light at wavelengths in the vicinity of 1420-1530 nm, using thulium doped silica-based optical fiber. This wavelength band is of interest as it falls in the low-loss optical fiber telecommunications window, and is somewhat shorter in wavelength than the currently standard erbium doped silica fiber amplifier. The device thus extends the band of wavelengths which can be supported for long-distance telecommunications. The additional wavelength band allows the data transmission rate to be substantially increased via wavelength division multiplexing (WDM), with minimal modification to the standard equipment currently used for WDM systems. The host glass is directly compatible with standard silica-based telecommunications fiber. The invention also enables modified silicate based amplifiers and lasers on a variety of alternative transitions. Specifically, an S-band thulium doped fiber amplifier (TDFA) using a true silicate fiber host is described.
Abstract:
A known quartz glass crucible for crystal pulling consists of a crucible wall, having an outer layer which is provided in an external area thereof with a crystallisation promoter which results in crystallisation of quartz glass, forming cristobalite when the quartz glass crucible is heated according to specified use in crystal pulling. The aim of the invention is to provide a quartz glass crucible which has a long service life. As a result, the crystallisation promoter contains, in addition to a silicon, a first component which acts as a reticulating agent in quartz glass and a second component which is free of alkali metals and which acts as an agent forming separating points in quartz glass. The above mentioned components are contained and incorporated into a doping area (8) of the outer layer (6) having a layer thickness of more than 0.2 mm.
Abstract:
A photosensitive glass made of a ternary compound SiO2:SnO2:R2O where R is a Group I element such as Na, K or Li. The addition of an oxide of a Group I element increases the solubility of tin oxide in a silica matrix and produces a glass which is highly photosensitive and in which optically written refractive index modulations have remarkable temperature stability (solid circles) at least as good as that of the binary glass SiO2:SnO2 (open circles) and much superior to that of conventional germanosilicate glass (solid triangles) or borogermanosilicate glass (open triangles). The inclusion of the Group I oxide effectively increases the solubility of tin oxide in the non-crystalline silica matrix well above the 1% limit of SiO2:SnO2 photosensitive glass, at which Sn would normally crystallize in the oxide. By contrast to boron or phosphorous co-dopants, the introduction of the Group I element does not appear to cause any increase in the background refractive index, allowing the manufacture of waveguide devices compatible with standard telecommunication fibers.