Abstract:
A hydraulic lash adjuster for valve gear of an internal combustion engine, having a plunger member reservoir chamber with a fluid passageway into the chamber that is substantially lower than the actual vertical height of the chamber and with a reservoir extender means for extending the oil reservoir chamber to a height well above the height of the fluid passageway and a means to precisely meter the flow of oil from the plunger member chamber through a bleed orifice passing through the upper end of the adjuster plunger member with the metering means retained and supported by a reservoir extender means.
Abstract:
A hydraulic tappet includes a tubular cylinder sideable within a bore of a housing, a piston with a reservoir slideably mounted within the tubular cylinder, a lower piston spring biased away from the piston with the reservoir forming a pressure chamber therebetween. The reservoir being in open communication with pressure oil ports and the pressure chamber selectively being closed or open to said reservoir. The closing or opening of the pressure chamber being controlled by the lower piston and cylinder riding on tracks of a cam which control the relative position of the cylinder and lower piston.
Abstract:
A valve mechanism includes: a support shaft immovably fixed to a main body of an internal combustion engine, a main arm swingably supported by the support shaft; two sub-arms arranged at both sides of the main arm; a coupling support portion swingably supporting and coupling the two sub-arms to the main arm; a cam; and a roller rotatably located in the main arm. Each of the two sub-arms includes: a drive unit pressing and driving a valve; and a contact portion contacting a plunger of a lash adjuster, the contact portion has a curved surface slidably contacting a flat surface formed in a tip portion of the plunger and having an arc-like curved surface shape of which a central axis line corresponds to a central swing axis line of the main arm in a state where the cam abuts on the roller in a base circular portion of the cam.
Abstract:
A rocker arm assembly including a rocker arm with an end portion including a socket portion on a top surface and a groove formed on the socket portion is provided. A clip having a generally C-shaped cross-section is provided. The clip includes a first leg with an opening that defines an inner edge that at least partially engages the groove on the socket portion of the rocker arm. The clip includes an intermediate leg including an opening through which a protrusion on the axial end of the rocker arm extends. The clip includes a second leg including first and second leg portions that engage the bottom surface of the rocker arm.
Abstract:
Provided is a variable valve device for an internal combustion engine. The variable valve device includes intake- and exhaust-side swing arms that pivot to open and close intake valves and exhaust valves in two cylinders #1, #2, intake- and exhaust-side hydraulic lash adjusters that serve as pivot points of the respective swing arms, a variable valve system that continuously varies valve lift characteristics of the intake valves and lost motion mechanisms that stop opening and closing of the intake exhaust valves by lost motion of the intake- and exhaust-side hydraulic lash adjusters on the cylinder #1. The maximum valve lifts of the intake valves are set larger than valve lifts of the exhaust valves. The minimum valve lifts of the intake valves are set smaller than the valve lifts of the exhaust valves.
Abstract:
The invention proposes a push-rod valve train having an adjustable valve tappet (1). This has an outer part (2a, 2b), an inner part (8) and a lost-motion spring (10), which forces the inner part (8) towards a relative position, at least one retainer ring (23), which is fixed in an annular groove (21) of the outer part (2a, 2b) and which interacts with a stop face (22) of the inner part (8), being provided for fixing the relative position, said retainer ring having lugs (28) extending radially inwards and separated by a fitting gap (27). In this the free movement of the valve push rod (15) relative to the lugs (28) is assured by the provision of a torsional locking means (30a, 30b), which serves to fix the radial position of the fitting gap (27) inside the annular groove (21).
Abstract:
A multiple-cylinder internal combustion engine having a camshaft-driven valvetrain with a camshaft disposed within an engine block includes at least two intake and/or exhaust valves with multiple valves operated by a common lifter and pushrod that engages a follower having multiple independent lash adjusters coupled to associated rocker arms. The lifter contacts the common camshaft lobe and a corresponding pushrod that engages a reciprocating bucket follower with a compliant coupling to corresponding rocker arms.
Abstract:
The invention proposes a push-rod valve train having an adjustable valve tappet (1). This has an outer part (2a, 2b), an inner part (8) and a lost-motion spring (10), which forces the inner part (8) towards a relative position, at least one retainer ring (23), which is fixed in an annular groove (21) of the outer part (2a, 2b) and which interacts with a stop face (22) of the inner part (8), being provided for fixing the relative position, said retainer ring having lugs (28) extending radially inwards and separated by a fitting gap (27). In this the free movement of the valve push rod (15) relative to the lugs (28) is assured by the provision of a torsional locking means (30a, 30b), which serves to fix the radial position of the fitting gap (27) inside the annular groove (21).
Abstract:
A mechanism and method is provided for preventing instantaneous unlatching of a driving and a driven member upon an accidental drop in the hydraulic-holding pressure. One embodiment of the mechanism includes a housing having an inlet port connectable to a substantially sustained high pressure fluid source; and a configured locking pin axially displaceable to an engaged position with respect to the inlet port in response to high pressure fluid entrapped in the housing. The locking pin is spring-biasingly axially displaceable to a disengaged position when the pressure is low. The axial displacement of the locking pin sufficiently overlaps the inlet port to form a variable orifice so that the rate of exhausting of entrapped fluid is variable. In another embodiment, the entrapped fluid is slowly exhausted until a seal length is reduced to zero by the retraction of the locking pin. In another embodiment, latching and unlatching is controlled by pressure pulses. In the latched state, contact between positively-engaged parts negates the need for sustained high fluid pressures.
Abstract:
A switch element (1) is proposed for valve shut-off, fabricated as cam follower for a plunger rod valve drive of an internal combustion engine, having an outer part (2) and an inner element (4) axially movable in its bore (3) and with rotational security (15) relative to the guided inner element (4). The outer part (2), inside the bore (3), has an annular groove (6), and the inner element (4) has a radial bore (7) with two diametrically opposed pistons (8), which to couple the elements (2, 4) in their axially remote relative position achieved by a lost-motion spring (5) are displaceable towards the annular groove (6). On their cam-side under side, emanating from their radially outward, bulbous face, the pistons (8) segmentwise comprise a plane transverse surface as contact area for a facing under side (27) of the annular groove (6). The latter is intersected by two diametrically opposed oil ports (11) running offset 90° from the pistons (8) in circumferential direction. In addition, the outer part (2) has means (13) for rotationally secured guidance of the switch element (1) relative to a surrounding structure.