Abstract:
The underside of an inactive portion of a display cover layer in an electronic device may be covered with an opaque masking material. Openings in the opaque masking material may be form ambient light sensor and proximity sensor windows. An ambient light sensor window may be filled with a material that transmits at least some visible light. A proximity sensor window may be filled with a material that transmits more infrared light relative to visible light than the material in the ambient light sensor window. The materials in the ambient light sensor window and proximity sensor window may include one or more layers of ink, patterns of holes, layers of material that are shared with the opaque masking layer, and materials that are black, white, or other colors. A light guide structure may be used to route light received from a sensor window to an associated sensor.
Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
An integrated, more automated system for determining the linearity of measurements of fiber optic power meters reduces the time and expense needed for linearity calibration. The system uses the triplet superposition method of linearity calibration and aids in performing the necessary series of measurements. A linearity measurement system for an optical power meter comprises an apparatus to output an optical signal to the optical power meter, the apparatus configured to output the optical signal at a controllable plurality of optical powers, a controller for controlling an optical power output from the apparatus to the optical power meter, a display device for displaying a state of the apparatus based on information from the controller, and an input device for commanding the controller to control the optical power output from the apparatus to the optical power meter.
Abstract:
A sensing device includes a housing and an image sensing system disposed in the housing and used for detecting a reflected light from an object. The image sensing system includes a substrate, a light sensing element, and a reflection and redirection element. The light sensing element is disposed on the substrate. The reflection and redirection element is disposed between the light sensing element and the object, and used for reflecting and redirecting the reflected light from the object to a receiving direction of the light sensing element, such that the light sensing element receives the reflected light and generates a corresponding sensing signal.
Abstract:
Embodiments provide a handheld optical measuring device and method of measuring an optical property of a liquid sample. In some embodiments the optical measuring device includes a handheld controller module having an immersible sensor head and a sampling member including a sample cup and an attachment member that couples the sample cup to the handheld controller module. In some embodiments the attachment member is an elongated rigid member that is hingedly coupled to the controller module, thus providing a folding configuration for enclosing the sensor head with the sample cup during measurements, transportation, and/or storage. In some embodiments the attached sample cup provides a protective shell for the immersible sensor head during use and/or when not in use.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; measuring the intensity or brightness of pixels in a target area; accumulating the intensity or brightness values of the pixels in the target area; and determining a pixel value representative of the intensity or brightness of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
A wireless lighting control system comprises a daylight sensor for measuring a light intensity in a space and a dimmer switch for controlling the amount of power delivered to a lighting load in response to the daylight sensor. For example, the daylight sensor may be able to transmit radio-frequency (RF) signals to the dimmer switch. The system provides methods of calibrating the daylight sensor that allow for automatically measuring and/or calculating one or more operational characteristics of the daylight sensor. One method of calibrating the daylight sensor comprises a “single-button-press” calibration procedure during which a user is only required to actuate a calibration button of the daylight sensor once. In addition, the daylight sensor is operable to automatically measure the total light intensity in the space at night to determine the light intensity of only the electrical light generated by the lighting load.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; determining the brightness of pixels in the target area; accumulating the brightness values of the pixels in the target area; and determining a pixel value representative of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
A non-visible radiation imaging system is provided in which an image is obtained based on non-visible radiation of an object. The image can be enhanced to increase its resolution. Additionally, the image can be combined with another image based on visible light for the object. Further, a non-visible radiation inspection system and method are provided that perform an inspection of the object using one or more of the images.
Abstract:
A laser power meter and associated method are disclosed. The laser power meter has an absorber that is placed in a path of a laser beam during a power measurement, a temperature sensor for measuring the temperature of the absorber, a differentiator for determining a rate of change of the temperature of the absorber, and a processor that computes an estimated power of the laser beam based on the temperature and its rate of change without considering power related loss effects and then computes the power of the laser beam based on the estimated power and the temperature and its rate of change.