Abstract:
A prober for measuring the light output of digital devices integrally formed on a single wafer. The prober includes a light-integrating sphere sequentially aligned with selected devices. Each time that a device is aligned with the sphere, the device aligned with the sphere is activated, so that the light output of each device is individually measured. In the disclosed embodiment, the devices are vertical cavity surface emitting lasers (VCSELs) and light emitting diodes (LEDs).
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe With respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A pixel density detector includes a cylinder (1) having a characteristic of catching incident light, an entrance window (2) provided in a shape of a slit in the longitudinal direction of the cylinder (1), and 2 pieces of light detecting device (4) disposed at a prescribed internal on the cylinder (1) at a prescribed angle against the entrance window (2).
Abstract:
A broadband radiometer including (a) an optical integrating sphere having aenerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.
Abstract:
The present invention is an off-axis collimator used to monitor the optoelectronic performance of a radiometer, which off-axis collimator is comprised of a single off-axis paraboloidal mirror, a broadband radiant energy source housed in an integrating sphere, detectors for monitoring the performance of the broadband radiant energy source, and a housing for the collimator.
Abstract:
Apparatus for measuring the radiation power of lasers, particularly infrared lasers, with a thermal detector, which supplies a power-caused measurement signal.In order to be able to measure rapid laser radiation power changes, the apparatus is so constructed that there is a device which locally integrates the laser radiation and to which, apart from the thermal detector, is connected at least one further detector, which is able to detect radiation power changes with a larger band width than the band width detectable by the thermal detector and that there is a circuit combining the measurement signals of the detectors.
Abstract:
A method and apparatus for measuring low-level laser-induced fluorescence are disclosed. A laser is used to produce a coherent beam of light which is sequentially passed through a beam expander, iris diaphram, focusing lens and three-dimensional scanner before being focused onto a rigidly mounted target. A computer is used to predeterminately control the pattern and the rate at which the scanner passes the beam of light over the target. The light transmitted onto the target induces fluorescent light in the target. The fluorescent light is sequentially gathered by a biased cut optical fiber member and directed into a photomultiplier tube where the intensity of the fluorescent light is measured. The intensity data is then digitized and recorded by the computer as a function of the coordinates of each preprogrammed point location of the beam impinging upon the target. This data is used to produce an image of all or a portion of the target on a visual monitor. In addition, the data can be recalled and used for further analysis of the target.
Abstract:
A photometer sphere includes a spherical interior encompassed by a diffusely reflecting wall, provided with apertures for incident light as well as for applying samples and photo detectors in the diffusely reflecting wall. The interior is filled completely by an optically homogenous, clear and stray-free material.
Abstract:
AN IMPROVED NON-SPECULAR DIFFUSE, REFECTIVE COATING IS PROVIDED BY COATING A SUBSTRATE WITH A COMPOSITION OF A HIGHLY REFLECTIVE, CRYSTALLINE INORGANIC SALT AND A LIQUID VEHICLE OF A SOLVENT HAVING LIMITED SOLVENT ACTIVITY FOR THE SALT, A NON-SOLVENT WETTING AGENT, AND A RELATIVELY VOLATILE DISPERSANT-DRYING AGENT, AND DRYING THE COATING. EXCELLENT RESULTS HAVE BEEN OBTAINED WHEN THE SALT IS SODIUM CHLORIDE, THE SOLVENT IS A DIOL WITH NOT MORE THAN ONE TERMINAL HYDROXY GROUP, THE NON-SOLVENT IS XYLENE OR TOLUENE, AND THE DRYING AGENT IS ETHANOL OR ISOPROPANOL.