Abstract:
A depolarizer includes a pair of wedge-shaped plates made of an optically isotropic material, laid one on top of another such that the total thickness is constant and wedge-plate holding means for holding the pair of wedge plates separately. The wedge-plate holding means includes a pressure-applying section for applying pressure to each of the pair of wedge plates in a direction perpendicular to the thickness direction of the pair of wedge plates. The pressure-applying direction for one of the pair of wedge plates and the pressure-applying direction for the other of the pair of wedge plates intersect at an angle of 45 degrees.
Abstract:
Provided is an optical apparatus characterized in that alight from a light source is split to a first light and a second light, and the first light is focused onto an observation object, that an optical filter having a light shielding region for high resolution is disposed in at least one optical path selected from optical paths of the first light, second light and response light from the observation object, that an interference light formed by causing interference between the response light and the reference light in polarized states different from each other is split to multiple beams, and desired amplitude information signals are obtained from the multiple beams through a phase plate and a polarization plate to increase intensity of the second light, whereby the signal to noise ratio is improved.
Abstract:
Application of digital light processor (DLP) systems in an imaging ellipsometer or imaging polarimeter with a focusing means, sample and detector arranged to meet the Scheimpflug condition.
Abstract:
An object identification device includes an image capturing device to capture images polarized in different directions. A noise removal unit removes noise in the polarized images using a noise removing parameter. An index value computing unit computes an object identification index value for identification-processing areas in the polarized images using data of noise-removed polarized images. An object identification processing unit conducts object identification by determining identification processing areas corresponding to an identification target object based on the object identification index value. An environment information obtaining unit obtains environment information. An environmental condition determination unit determines an environmental condition based on the environment information. A parameter storage unit stores noise removing parameters prepared for mutually exclusive environmental conditions. The noise removal unit reads a noise removing parameter from the parameter storage unit to conduct noise removal. A method of identifying an object and a spectroscopic image capturing apparatus are also provided.
Abstract:
An apparatus for information extraction from electromagnetic energy via multi-characteristic spatial geometry processing to determine three-dimensional aspects. Structure receives the electromagnetic energy, which has a plurality of spatial phase characteristics. Structure separates the plurality of spatial phase characteristics of the received electromagnetic energy. Structure identifies spatially segregated portions of each of the plurality of spatial phase characteristics, with each spatially segregated portion corresponding in a point to point relationship to a spatially segregated portion for each of the other of the plurality of spatial phase characteristics in a group. Structure quantifies each segregated portion to provide a spatial phase metric of each segregated portion for providing a data map of the spatial phase metric of each separated spatial phase characteristic of the plurality of spatial phase characteristics. Structure processes the spatial phase metrics to determine surface contour information for each segregated portion of the data map.
Abstract:
An apparatus for information extraction from electromagnetic energy via multi-characteristic spatial geometry processing to determine three-dimensional aspects of an object from which the electromagnetic energy is proceeding. The apparatus receives the electromagnetic energy. The received electromagnetic energy has a plurality of spatial phase characteristics. The apparatus separates the plurality of spatial phase characteristics of the received electromagnetic energy. The apparatus r identifies spatially segregated portions of each spatial phase characteristic, with each spatially segregated portion of each spatial phase characteristic corresponding to a spatially segregated portion of each of the other spatial phase characteristics in a group. The apparatus quantifies each segregated portion to provide a spatial phase metric of each segregated portion for providing a data map of the spatial phase metric of each separated spatial phase characteristic. The apparatus processes the spatial phase metrics to determine surface contour information for each segregated portion of the data map.
Abstract:
A tunable optical spectrometer is disclosed that includes a medium configured to perform polarization rotation within a frequency band on a linearly polarized test beam, wherein the medium is circularly birefringent, and wherein the polarization rotation is achieved based on two-photon-absorption. The medium includes a gaseous substance, a reference laser beam of circular polarization and a longitudinal magnetic field. The test beam propagates through the medium twice, once in the same direction as the magnetic field, and once in the opposite direction of the magnetic field. The test beam undergoes polarization rotation an amount that depends upon the frequency of the test beam.
Abstract:
A tunable optical spectrometer is disclosed that includes a medium configured to perform polarization rotation within a frequency band on a linearly polarized test beam, wherein the medium is circularly birefringent, and wherein the polarization rotation is achieved based on two-photon-absorption. The medium includes a gaseous substance, a reference laser beam of circular polarization and a longitudinal magnetic field. The test beam propagates through the medium twice, once in the same direction as the magnetic field, and once in the opposite direction of the magnetic field. The test beam undergoes polarization rotation an amount that depends upon the frequency of the test beam.
Abstract:
Application of digital light processor (DLP) systems in monochromator, spectrophotometer or the like systems to mediate selection of individual wavelengths, and/or to image elected regions of a sample in an imaging ellipsometer, imaging polarimeter, imaging reflectometer, imaging spectrophotometer, and/or to provide chopped beams.
Abstract:
Apparatus for analyzing light having at least one wavelength, the apparatus comprising: (a) a light deflector for deflecting the light so as to provide a deflected light beam characterized by at least one wavelength-dependent angle, respectively corresponding to the at least one wavelength of the light; (b) an encoder, capable of encoding the deflected light beam so as to provide an encoded light beam characterized by at least one angle-dependent polarization state, respectively corresponding to the at least one wavelength-dependent angle; and (c) a decoder, for decoding the encoded light beam so as to determine at least one spectral component of the light.