Abstract:
A method and apparatus for generating a color mapping for a dental object. The method includes generating a transformation matrix according to a set of spectral reflectance data for a statistically valid sampling of teeth. Illumination is directed toward the dental object over at least a first, a second, and a third wavelength band, one wavelength band at a time. For each of a plurality of pixels in an imaging array, an image data value is obtained, corresponding to each of the at least first, second, and third wavelength bands. The transformation matrix is applied to form the color mapping by generating a set of visual color values for each of the plurality of pixels according to the obtained image data values and according to image data values obtained from a reference object at the at least first, second, and third wavelength bands. The color mapping can be stored in an electronic memory.
Abstract:
Methods of optimizing the diameters of nanowire photodiode light sensors. The method includes comparing the response of nanowire photodiode pixels having predetermined diameters with standard spectral response curves and determining the difference between the spectral response of the photodiode pixels and the standard spectral response curves. Also included are nanowire photodiode light sensors with optimized nanowire diameters and methods of scene reconstruction.
Abstract:
The invention discloses a method of constructing light-measuring look-up table, a light-measuring method, and a light-measuring system. The method of constructing light-measuring look-up table is to construct a look-up table by according to spectrum parameters relative to a light spectrum model, three actual color-matching functions relative to the light-measuring system and three standard color-matching functions, calculating both a look-up color coordinate and a reference color coordinate corresponding to each of the spectrum parameters. The light-measuring method includes: first, measuring a to-be-measured light by the light-measuring system to obtain actual stimulus values and calculating an actual color coordinate; then, comparing the actual color coordinate with the look-up color coordinates to determine both a to-be-measured light spectrum parameter and an estimated color coordinate relative to the to-be-measured light; furthermore, according to the to-be-measured light spectrum parameter, one of the standard color-matching functions and one of the actual stimulus values, calculating an estimated luminance.
Abstract:
A method of determining lighting contributions of elements of a lighting component includes obtaining optical data representative of light output of the lighting component. Relative intensity data may be calculated from the optical data, and may indicate intensity differences in the light output of the lighting component as compared to that of a reference component. An optical property of an element of the lighting component is determined based on a comparison of the optical data with that of the reference component, where the reference component includes at least one reference element. Related systems and apparatus are also discussed.
Abstract:
The system provides for controlling color reproduction of input color image data in a network having nodes (or sites). The system distributes the input color image data from one of the nodes to other nodes, and provides data structures in the network. The system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The rendering device of each node renders a color reproduction responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices.
Abstract:
In a color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the samples to a spectrograph. A rendering device may also be a display having a member supporting a color measuring instrument for receiving light from an area of the screen. The color measuring instruments provide for non-contact measurements of color samples rendered on a display or a sheet, and are self calibrating by the use of calibration references.
Abstract:
The system provides for controlling color reproduction of input color image data in a network having nodes (or sites). The system distributes the input color image data from one of the nodes to other nodes, and provides data structures in the network. The system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The rendering device of each node renders a color reproduction responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices.
Abstract:
Methods of optimizing the diameters of nanowire photodiode light sensors. The method includes comparing the response of nanowire photodiode pixels having predetermined diameters with standard spectral response curves and determining the difference between the spectral response of the photodiode pixels and the standard spectral response curves. Also included are nanowire photodiode light sensors with optimized nanowire diameters and methods of scene reconstruction.
Abstract:
A method and system for measuring a colour value of a target comprising a mobile communication device having a camera with a sensor arranged to detect wavelengths of incident light reflected from an illuminated target. The mobile communication device also has a processor arranged to measure a colour value of the target based on the detected wavelengths received from the sensor, and to output the measured colour value of the target for display on a display of the mobile communication device.
Abstract:
Sporting items such as soccer balls include a casing region and a graphic region that are defined by enhanced-visibility colors (EVCs) that are substantially complementary. Such EVCs can be selected to avoid colors associated with color confusion in color deficient individuals. In addition, such colors can be selected based on total reflectances to obtain a predetermined luminance contrast. EVCs can be selected based on separations of color coordinate locations using CIE chromaticity coordinates or CIE L-a-b coordinates or otherwise selected. Color selection can include consideration of anticipated viewing backgrounds in a general setting, or colors can be customized for a particular location and particular illumination conditions.