Abstract:
Sensors, such as optical sensors and other sensors used in an aqueous environment are protected from biological contamination by applying a biocide behind a shutter. The shutter is capable of covering a subject portion of the sensor or surrounding mounting surface adjacent the sensor in at least a semi-sealing manner. A well or reservoir forms a chamber in the shutter that is capable of holding a biocide having a limited water solubility and a low environmental toxicity in the aqueous environment, for example, anhydrous iodine crystals. The reservoir is in communication with the portion of the sensor while positioned against the portion of the sensor or surrounding mounting surface adjacent the sensor.
Abstract:
A fluorescence illumination system is provided for use with an imaging apparatus that defines a light-tight imaging compartment. The fluorescence illumination system includes a trans-illumination component configured to direct excitation light into a first surface of the specimen wherein diffused light emanates from a second surface thereof for receipt through the view port to acquire fluorescence data of the specimen. Further, the fluorescence illumination system includes an epi-illumination component configured to direct excitation light onto a third surface of the specimen wherein the diffused light exits the third surface thereof for receipt through the view port to acquire fluorescence data of the specimen.
Abstract:
The invention concerns measurements in which light interacts with matter to generate light intensity changes, and spectrophotometer devices of the invention provide ultrasensitive measurements. Light source noise in these measurements can be reduced in accordance with the invention. Exemplary embodiments of the invention use sealed housings lacking an internal light source. In some embodiments a substantially solid thermally conductive housing is used. Other embodiments include particular reflection based sample and reference cells. One embodiment includes a prism including an interaction surface, a detector, a lens that focuses a prism beam output onto the detector, and a closed interaction volume for delivering gas or liquid to the interaction surface. Another embodiment replaces a prism with a reflective surface. Another embodiment replaces a prism with a scattering matte surface. Aspects of the invention identify noise-contributing components in spectrophotometry and realize noise levels very near the shot noise limit.
Abstract:
The invention concerns measurements in which light interacts with matter giving rise to changes in light intensity, and preferred embodiment spectrophotometer devices of the invention provide for ultrasensitive measurements through a reflection interaction with matter. The level of light source noise in these measurements can be reduced in accordance with the invention. Preferred embodiments of the invention use sealed housings lacking an internal light source, and reflection based sample and reference cells. In some embodiments a substantially solid thermally conductive housing is used. Other features of preferred embodiments include particular reflection based sample and reference cells. A total internal reflection embodiment includes, for example, a prism including an interaction surface, a detector, a lens that focuses a beam output from the prism onto the detector, and a closed interaction volume having an inlet and an outlet for delivering gas or liquid to the interaction surface. In a specular reflection embodiment, a reflective surface is used instead of a prism. In a diffuse reflection embodiment a matte surface is used instead of a prism and the matte surface produces scattering. Aspects of the invention include identification of noise-contributing components in spectrophotometry and the select set of preferred features in a given embodiment, and noise levels very near the shot noise limit may be realized with application of preferred embodiment devices.
Abstract:
A macroscopic fluorescence illumination assembly is provided for use with an imaging apparatus with a light-tight imaging compartment. The imaging apparatus includes an interior wall defining a view port extending into the imaging compartment to enable viewing of a specimen contained therein. The illumination assembly includes a specimen support surface sized and dimensioned for receipt in the imaging compartment, and oriented to face toward the view port of the imaging apparatus. The support surface is substantially opaque and defines a window portion that enables the passage of light there through. The window portion is selectively sized and dimensioned such that the specimen, when supported atop the support surface, can be positioned and seated over the window portion in a manner forming a light-tight seal substantially there between. The illumination assembly further includes an excitation light source, and a bundle of fiber optic strands having proximal ends thereof in optical communication with the light source. The distal ends of the strands terminate proximate the window portion of the support surface. The distal ends each emit a respective beam of light originating from the light source which are then collectively directed toward the window portion and into a bottom side of the specimen wherein the diffused light passes there through and exits a topside thereof for receipt through the view port to view the fluorescence of the specimen.
Abstract:
Aspects relate to an optical fluid analyzer including a fluid cell configured to receive a sample fluid. The optical fluid analyzer further includes optical elements configured to seal the fluid cell on opposing sides thereof and to allow input light from a light source to be sent through the fluid cell and output light from the fluid cell to be input to a spectrometer. The optical fluid analyzer further includes a machine learning (ML) engine, such as an artificial intelligence (AI) engine, that is configured to generate a result defining at least one parameter of the fluid based on a spectrum produced by the spectrometer.
Abstract:
There is an inspection system including multiple inspection units configured to inspect substrates, wherein each of the inspection units includes: a tester configured to inspect a substrate; a moving part configured to hold and move the substrate relative to the tester; and a frame structure configured to accommodate the tester and the moving part, wherein the frame structure of one inspection unit includes: a first frame to be connected to a frame structure of another inspection unit; and a second frame that accommodates at least the moving part and is configured to move relative to the first frame to extract the moving part from the first frame.
Abstract:
A method for installing at least one optical element in an interior space of a housing includes: clamping a sensor assembly in an interior of the housing in at least one radial clamping direction extending perpendicularly to a centering axis using at least one elastic body, wherein the sensor assembly comprises at least one optical elements, wherein each respective elastic body is inserted into a recess, which extends parallel to the centering axis and is open towards the interior space, and is clamped there such that each of the at least one elastic bodies exerts a clamping force acting in the respective radial clamping direction on an outer edge of each of the at least one optical elements of the assembly adjacent thereto in the interior space of the housing and to be clamped in the housing.
Abstract:
Disclosed herein are seals for liquid-tight bonding of an optical window comprising a Bi—In alloy. Also disclosed are optical cells comprising the Bi—In alloy seals to provide a liquid-tight seal between a cell housing and a drilled optical window.
Abstract:
A biological body inspection apparatus includes a measurement module that acquires an amount of light having a wavelength under measurement contained in light incident on the measurement module and an enclosure that accommodates the measurement module and has a window that transmits light traveling toward the measurement module. An adhesive member is provided on a surface of the enclosure at least in an area thereof that surrounds the window. The adhesive member has a light blocking section that is located in an area outside the window and surrounds the window in a plan view in the direction along the optical axis of the light traveling toward the measurement module and blocks light that belongs to a measurement wavelength region within which at least the wavelength under measurement is present.