Abstract:
An arc chamber has a liner operably coupled to body. The liner has a second surface recessed from a first surface and a hole having a first diameter. The liner has a liner lip extending upwardly from the second surface toward the first surface that surrounds the hole and has a second diameter. An electrode has a shaft and head. The shaft has a third diameter that is less than the first diameter and passes through the body and hole and is electrically isolated from the liner by an annular gap. The head has a fourth diameter and a third surface having an electrode lip extending downwardly from the third surface toward the second surface. The electrode lip has a fifth diameter that is between the second and fourth diameters. A spacing between the liner lip and electrode lip defines a labyrinth seal and generally prevents contaminants from entering the annular gap. The shaft has an annular groove configured to accept a boron nitride seal.
Abstract:
An electrostatic lens comprising a first conductive plate with a first aperture, a second conductive plate with a second aperture, the second aperture being substantially aligned with the first aperture, a voltage supply for supplying a first voltage to the first conductive plate and a second voltage to the second conductive plate, the first voltage being lower than the second voltage, and an insulating structure for separating the first conductive plate from the second conductive plate. The insulating structure comprises a first portion in contact with the first conductive plate and a second portion in contact with the second conductive plate, the first portion having an overhanging portion and the second portion having an indented portion at an edge of the insulating structure, so that a gap is formed between the overhanging portion and the second conductive plate.
Abstract:
A plasma processing apparatus includes a processing chamber that plasma processes a target object therein, first and second electrodes that are provided in the processing chamber to face each other and have a processing space therebetween, and a high frequency power source that is connected to at least one of the first and second electrodes to supply high frequency power to the processing chamber. At least one of the first and second electrodes includes a base formed of a metal, a dielectric material provided at a central portion of a plasma side of the base, and a first resistor provided between the dielectric material and plasma, and formed of a metal with a predetermined pattern.
Abstract:
An optical system for a charged particle includes a first member though which a charged particle beam is transmitted and a second member to control optically the charged particle beam transmitted through the first member. The second member has a fixing portion fixed to the first member. A slit is arranged between a part of the second member and the fixing portion to separate the part of the second member from the fixing portion, such that the part of the second member is a cantilever beam structure pivotal in relation to the fixing portion.
Abstract:
A charged particle optical system includes: a member 112 likely deforming due to heat; and an electrostatic deflector 113 deflecting a charged particle beam 1 and fixed to the member 112. An electrode supporting portion 5 is placed on the fixing portion 7 so as to reduce a transmission of a deforming stress from the member 112 to the electrode supporting portion 5 in a direction of the electric field through the fixing portion 7. The transmission of the stress from the member that causes deformation to the electrode supporting portion of the electrostatic deflector is suppressed, and the dispersion of the deflections of a plurality of the charged particle beams is reduced.
Abstract:
A lithographic apparatus which performs drawing on a substrate with a charged-particle beam, includes an optical system having an aperture plate in which a first number of apertures are formed to pass a first number of charged-particle beams to perform the drawing, a substrate holder, a cleaning unit configured to clean the aperture plate, and a chamber containing the optical system and the substrate holder. The cleaning unit includes a case having an emitting hole plate in which a second number of emitting holes are formed, the second number being smaller than the first number, an active species source configured to generate active species in the case, and a driving mechanism configured to move the case.
Abstract:
The invention relates to a charged particle system for processing a target surface with at least one charged particle beam. The system comprises an optical column with a beam generator module for generating a plurality of charged particle beams, a beam modulator module for switching on and off said plurality of beams and a beam projector module for projecting beams or subbeams on said target surface. The system further comprises a frame supporting each of said modules in a fixed position and alignment elements for aligning at least one of beams and/or subbeams with a downstream module element.
Abstract:
A dual unbalanced indirectly heated cathode (IHC) ion chamber is disclosed. The cathodes have different surface areas, thereby affecting the amount of heat radiated by each. In the preferred embodiment, one cathode is of the size and dimension typically used for IHC ionization, as traditionally used for hot mode operation. The second cathode, preferably located on the opposite wall of the chamber, is of a smaller size. This smaller cathode is still indirectly heated by a filament, but due to its smaller size, radiates less heat into the source chamber, allowing the ion source to operate in cold mode, thereby preserving the molecular structure of the target molecules. In both modes, the unused cathode is preferably biased so as to be at the same potential as the IHC, thus allowing it to act as a repeller.
Abstract:
A charged beam drawing apparatus deflects, by an electrostatic deflector, a charged beam generated from a charged beam source, and applies the charged beam to a desired position on a sample to draw a pattern. The electrostatic deflector includes a plurality of deflecting electrodes arranged symmetrically with respect to a point around an optical axis of the charged beam, a ground external cylinder which is disposed coaxially with the optical axis and which is provided to enclose the deflecting electrodes, a resistive film provided on an inner surface of the ground external cylinder, and a conductive film provided on a surface of the resistive film. A capacitance is formed between the deflecting electrodes and the conductive film, and a resistance is formed between the ground conductor and the conductive film.
Abstract:
An electron beam drawing apparatus, comprises an electrostatic deflector which deflects the electron beam by an electric field, a coaxial cable which is connected to deflecting electrodes, and a resistive element which is connected between a central conductor and an outer conductor or the external cylinder. The electrostatic deflector includes the external cylinder provided more downstream than the electron source and kept at the ground potential and a plurality of deflecting electrodes which are provided in the external cylinder. The coaxial cable includes the central conductor and the tubular outer conductor, one end of the central conductor passing through the external cylinder and being connected to the deflecting electrodes and one end of the outer conductor being connected to the external cylinder. The resistive element is set to a resistance for obtaining impedance matching with the coaxial cable.