Abstract:
The source bushing assembly has a source bushing having an internal vacuum side and an external atmosphere side, a first shield of annular shape disposed at one end of the source bushing in spaced concentric relation to reduce formation of an electrically conductive coating on the source bushing, a second shield of annular shape disposed at an opposite end of the source bushing in spaced concentric relation to prevent arcing on the source bushing and an internally disposed concentric X-ray shield.
Abstract:
An inductively coupled plasma source having multiple gases in the plasma chamber provides multiple ion species to a focusing column. A mass filter allows for selection of a specific ion species and rapid changing from one species to another.
Abstract:
The presently disclosed technology provides a responsive ion beam source power supply system capable of handling fault events without relying on conventional protection circuitry (e.g., fuses and breakers) so that physical power supply hardware intervention by a user is minimized for typical fault conditions and the ion beam source power supply system may recover automatically after experiencing a fault condition. The presently disclosed technology further discloses an ion beam source power supply system capable of detecting and diagnosing fault states, autonomously implementing command decisions to preserve or protect the function of other ion source modules or sub-systems, and/or mitigating or recovering from the disruptive fault event and returning the ion beam source system to desired user settings.
Abstract:
According to one embodiment, a laser ion source is configured to generate ions by application of a laser beam, the laser ion source including a case to be evacuated, an irradiation box disposed in the case and including a target which generates ions by irradiation of laser light, an ion beam extraction mechanism which electrostatically extracts ions from the irradiation box and guides the ions outside the case as an ion beam, a valve provided to an ion beam outlet of the case, the valve being opened at ion beam emission and being closed at other times, and a shutter provided between the valve and the irradiation box, the shutter being intermittently opened at ion beam emission and being closed at other times.
Abstract:
A method of processing a substrate includes performing a first exposure that comprises generating a plasma containing reactive gas ions in a plasma chamber and generating a bias voltage between the substrate and the plasma chamber. The method also includes providing a plasma sheath modifier having an aperture disposed between the plasma and substrate and operable to direct the reactive gas ions toward the substrate, and establishing a pressure differential between the plasma chamber and substrate region while the reactive gas ions are directed onto the substrate.
Abstract:
The presently disclosed technology provides a responsive ion beam source power supply system capable of handling fault events without relying on conventional protection circuitry (e.g., fuses and breakers) so that physical power supply hardware intervention by a user is minimized for typical fault conditions and the ion beam source power supply system may recover automatically after experiencing a fault condition. The presently disclosed technology further discloses an ion beam source power supply system capable of detecting and diagnosing fault states, autonomously implementing command decisions to preserve or protect the function of other ion source modules or sub-systems, and/or mitigating or recovering from the disruptive fault event and returning the ion beam source system to desired user settings.
Abstract:
Embodiments of the present invention provide for a system for accelerating hydrogen ions. A hydrogen generator holding a supply of water is configured to generate a flow of hydrogen gas from the supply of water. An ion source structure is configured to generate a plurality of hydrogen ions from the flow of hydrogen gas. An accelerator tube is configured to accelerate the plurality of hydrogen ions. The supply of water has an isotopic ratio of deuterium that is smaller than the isotopic ratio of deuterium in Vienna Standard Mean Ocean Water.
Abstract:
A particle source in which energy selection occurs by sending a beam of electrically charged particles eccentrically through a lens so that energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit in an energy selecting diaphragm, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam will have a reduced energy spread. The energy dispersed spot is imaged on the slit by a deflector. When positioning the energy dispersed spot on the slit, central beam is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm. Hereby reflections and contamination resulting from this beam in the region after the diaphragm are avoided. Also electron-electron interaction resulting from the electrons from the central beam interacting with the energy filtered beam in the area of deflector is avoided.
Abstract:
An apparatus for producing ions can include an emitter having a first end and a second end. The emitter can be coated with an ionic liquid room-temperature molten salt. The apparatus can also include a power supply and a first electrode disposed downstream relative to the first end of the emitter and electrically connected to a first lead of the power supply. The apparatus can also include a second electrode disposed downstream relative to the second end of the emitter and electrically connected to a second lead of the power supply.
Abstract:
Herein, an improved technique for processing a substrate is disclosed. In one particular exemplary embodiment, the technique may be achieved using a mask for processing the substrate. The mask may be incorporated into a substrate processing system such as, for example, an ion implantation system. The mask may comprise one or more first apertures disposed in a first row; and one or more second apertures disposed in a second row, each row extending along a width direction of the mask, wherein the one or more first apertures and the one or more second apertures are non-uniform.