Abstract:
An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
Abstract:
An etchant is supplied to a workpiece. Furthermore, the workpiece is irradiated with spatially modulated light to adjust a temperature profile of the workpiece while etchant is supplied.
Abstract:
An environmental cell for a charged particle beam system allows relative motion between the cell mounted on an X-Y stage and the optical axis of the focusing column, thereby eliminating the need for a sub-stage within the cell. A flexible cell configuration, such as a retractable lid, permits a variety of processes, including beam-induced and thermally-induced processes. Photoelectron yield spectroscopy performed in a charged particle beam system and using gas cascade amplification of the photoelectrons allows analysis of material in the cell and monitoring of processing in the cell. Luminescence analysis can be also performed using a retractable mirror.
Abstract:
A circular PVD chamber has a plurality of sputtering targets mounted on a top wall of the chamber. A pallet in the chamber is coupled to a motor for rotating the pallet about its center axis. The pallet has a diameter less than the diameter of the circular chamber. The pallet is also shiftable in an XY direction to move the center of the pallet beneath any of the targets so all areas of a workpiece supported by the pallet can be positioned directly below any one of the targets. A scanning magnet is in back of each target and is moved, via a programmed controller, to only be above portions of the workpiece so that no sputtered material is wasted. For depositing a material onto small workpieces, a cooling backside gas volume is created between the pallet and the underside of sticky tape supporting the workpieces.
Abstract:
A heating device having a heating element patterned into a robust MEMs substrate, wherein the heating element is electrically isolated from a fluid reservoir or bulk conductive sample, but close enough in proximity to an imagable window/area having the fluid or sample thereon, such that the sample is heated through conduction. The heating device can be used in a microscope sample holder, e.g., for SEM, TEM, STEM, X-ray synchrotron, scanning probe microscopy, and optical microscopy.
Abstract:
In an existing specimen cryo holder, a change in the orientation of a specimen would lead to tilting of a dewar together with the specimen and hence to bubbling of a cooling source contained in the dewar. In view of this, a specimen cryo holder, including a mechanism capable of cooling a specimen while keeping the posture of a dewar in a fixed direction even when the specimen is tilted into a direction suitable for processing or observation thereof, is provided. Also provided is a dewar in which a vacuum maintenance mechanism is mounted to an outer vessel so that an inner vessel holding a cooling source therein is vacuum-insulated from the outside air.
Abstract:
A system for controlling a temperature of a wafer processing substrate includes memory that stores first data indicative of first temperature responses of at least one first thermal control element. The first data corresponds to the first temperature responses as observed when a first control parameter of the at least one first thermal control element is maintained at a first predetermined first value. A first controller receives a setpoint temperature for the wafer processing substrate and maintains the first control parameter of the at least one first thermal control element at a second value based on the received setpoint temperature. A second controller retrieves the first data from the memory, calculates second data indicative of temperature non-uniformities associated with the wafer processing substrate based on the first data and the second value, and controls a plurality of second thermal control elements based on the calculated second data.
Abstract:
A holder assembly comprises a first and a separable second part, the first part detachable from the second part, the first part comprising a tube and an environmental cell interface and the second part comprising an electron microscope interface, as a result of which the first part can be cleaned at high temperatures without exposing the second part to said high temperature.By forming the holder assembly from detachable parts, one part can be cleaned by heating it to a high temperature of, for example, 1000° C., clogging in the tubes can be removed by reduction of carbon, while keeping the other part (often comprising mechanical fittings, ball bearing, sliders, or such like) cool. The cleaning can be enhanced by blowing, for example, oxygen or hydrogen through the tubes.
Abstract:
A system and method for heating a substrate while that substrate is being processed by an ion beam is disclosed. The system comprises two arrays of light emitting diodes (LEDs) disposed above and below the ion beam. The LEDs may be GaN or GaP LEDs, which emit light at a wavelength which is readily absorbed by silicon, thus efficiently and quickly heating the substrate. The LED arrays may be arranged so that the ion beam passes between the two LED arrays and strikes the substrate. As the substrate is translated relative to the ion beam, the LEDs from the LED arrays provide heating to the substrate.
Abstract:
An object of the invention is to provide an electron microscope which can easily and safely prepare a gas or liquid environment in the electron microscope and can observe a specimen in the environment and a reaction of the specimen at a high resolution and to provide a specimen holder for the electron microscope. In the electron microscope including specimen holding means (6) for holding a specimen (23), the specimen (23) is placed in a capillary (17) through which electron beams are transmittable, the electron microscope includes a supply device for supplying gas or liquid into the capillary (17) and a collection device for collecting the gas or the liquid, and the electron microscope obtains a specimen image of the specimen while flowing the gas or the liquid.