Abstract:
An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
Abstract:
An ion implantation system and method is provided for varying an angle of incidence of a scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. The system has an ion source configured to form an ion beam and a mass analyzer configured to mass analyze the ion beam. An ion beam scanner is configured to scan the ion beam in a first direction, therein defining a scanned ion beam. A workpiece support is configured to support a workpiece thereon, and an angular implant apparatus is configured to vary an angle of incidence of the scanned ion beam relative to the workpiece. The angular implant apparatus comprises one or more of an angular energy filter and a mechanical apparatus operably coupled to the workpiece support, wherein a controller controls the angular implant apparatus, thus varying the angle of incidence of the scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece.
Abstract:
An ion implantation system and method for implanting ions at varying energies across a workpiece is provided. The system comprises an ion source configured to ionize a dopant gas into a plurality of ions and to form an ion beam. A mass analyzer is positioned downstream of the ion source and configured to mass analyze the ion beam. A deceleration/acceleration stage is positioned downstream of the mass analyzer. An energy filter may form part of the deceleration/acceleration stage or may positioned downstream of the deceleration/acceleration stage. An end station is provided having a workpiece support associated therewith for positioning the workpiece before the ion beam is also provided. A scanning apparatus is configured to scan one or more of the ion beam and workpiece support with respect to one another. One or more power sources are operably coupled to one or more of the ion source, mass analyzer, deceleration/acceleration stage, and energy filter. A controller is configured to selectively vary one or more voltages respectively supplied to one or more of the deceleration/acceleration stage and the energy filter concurrent with the scanning of the ion beam and/or workpiece support, wherein the selective variation of the one or more voltages is based, at least in part, on a position of the ion beam with respect to the workpiece support.
Abstract:
An ion implantation system and method for implanting ions at varying energies across a workpiece is provided. The system comprises an ion source configured to ionize a dopant gas into a plurality of ions and to form an ion beam. A mass analyzer is positioned downstream of the ion source and configured to mass analyze the ion beam. A deceleration/acceleration stage is positioned downstream of the mass analyzer. An energy filter may form part of the deceleration/acceleration stage or may positioned downstream of the deceleration/acceleration stage. An end station is provided having a workpiece support associated therewith for positioning the workpiece before the ion beam is also provided. A scanning apparatus is configured to scan one or more of the ion beam and workpiece support with respect to one another. One or more power sources are operably coupled to one or more of the ion source, mass analyzer, deceleration/acceleration stage, and energy filter. A controller is configured to selectively vary one or more voltages respectively supplied to one or more of the deceleration/acceleration stage and the energy filter concurrent with the scanning of the ion beam and/or workpiece support, wherein the selective variation of the one or more voltages is based, at least in part, on a position of the ion beam with respect to the workpiece support.
Abstract:
An ion implantation system and method is provided for varying an angle of incidence of a scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. The system has an ion source configured to form an ion beam and a mass analyzer configured to mass analyze the ion beam. An ion beam scanner is configured to scan the ion beam in a first direction, therein defining a scanned ion beam. A workpiece support is configured to support a workpiece thereon, and an angular implant apparatus is configured to vary an angle of incidence of the scanned ion beam relative to the workpiece. The angular implant apparatus comprises one or more of an angular energy filter and a mechanical apparatus operably coupled to the workpiece support, wherein a controller controls the angular implant apparatus, thus varying the angle of incidence of the scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece.
Abstract:
A method for implanting high charge state ions into a workpiece while mitigating trace metal contamination includes generating desired ions at a first charge state from a desired species in an ion source, as well as generating trace metal ions of a contaminant species in a first ion beam. A charge-to-mass ratio of the desired ions and the trace metal ions is equal. The desired ions and trace metal ions are extracted from the ion source. At least one electron stripped from the desired ions to define a second ion beam of the desired ions at a second charge state and the trace metal ions. Only the desired ions from the second ion beam are selectively passed only through a charge selector to define a final ion beam of the desired ions at the second charge state and no trace metal ions, and the desired ions of the second charge state are implanted into a workpiece.
Abstract:
A method for implanting high charge state ions into a workpiece while mitigating trace metal contamination includes generating desired ions at a first charge state from a desired species in an ion source, as well as generating trace metal ions of a contaminant species in a first ion beam. A charge-to-mass ratio of the desired ions and the trace metal ions is equal. The desired ions and trace metal ions are extracted from the ion source. At least one electron stripped from the desired ions to define a second ion beam of the desired ions at a second charge state and the trace metal ions. Only the desired ions from the second ion beam are selectively passed only through a charge selector to define a final ion beam of the desired ions at the second charge state and no trace metal ions, and the desired ions of the second charge state are implanted into a workpiece.
Abstract:
An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
Abstract:
An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.
Abstract:
An ion implantation system has a first chamber and a process chamber with a heated chuck. A controller transfers the workpiece between the heated chuck and first chamber and selectively energizes the heated chuck first and second modes. In the first and second modes, the heated chuck is heated to a first and second temperature, respectively. The first temperature is predetermined. The second temperature is variable, whereby the controller determines the second temperature based on a thermal budget, an implant energy, and/or an initial temperature of the workpiece in the first chamber, and generally maintains the second temperature in the second mode. Transferring the workpiece from the heated chuck to the first chamber removes implant energy from the process chamber in the second mode. Heat may be further transferred from the heated chuck to a cooling platen by a transfer of the workpiece therebetween to sequentially cool the heated chuck.