Abstract:
A charged particle beam irradiation apparatus, which irradiates a substrate with a charged particle beam, includes a capacitance sensor and an optical sensor configured to measure a surface position of the substrate, a storage unit configured to store respective measurement values of the surface position of the substrate measured by the optical sensor and the capacitance sensor, and a calculation unit configured to obtain surface position data of the substrate, in which the calculation unit obtains a correction amount by using respective measurement values of the surface position measured by the capacitance sensor and the optical sensor in a region within a scribe line formed on the substrate, which are stored in the stored unit, and applies the correction amount to the measurement value of the surface position measured by the capacitance sensor, to obtain the surface position data of the substrate.
Abstract:
An ion implantation system for neutralizing the space charge effect associated with a high current low energy ion beam. The implantation system includes an ion source configured to receive a dopant gas and generate ions having a particular energy and mass from which ions are extracted through an aperture. A work piece positioned downstream of the ion source for receiving the extracted ions in the form of an ion beam. A bleed gas channel disposed between the ion source and the work piece. The bleed gas channel supplying a gas used to neutralize the space charge effect associated with the ion beam.
Abstract:
An ion implantation system for neutralizing the space charge effect associated with a high current low energy ion beam. The implantation system includes an ion source configured to receive a dopant gas and generate ions having a particular energy and mass from which ions are extracted through an aperture. A work piece positioned downstream of the ion source for receiving the extracted ions in the form of an ion beam. A bleed gas channel disposed between the ion source and the work piece. The bleed gas channel supplying a gas used to neutralize the space charge effect associated with the ion beam.
Abstract:
Provided is a charged particle beam processing apparatus capable of improving yields by suppressing the spread of metal pollution to a semiconductor manufacturing process to a minimum. The charged particle beam processing apparatus includes an ion beam column 1 that is connected to a vacuum vessel 10 and irradiates a sample 35 with an ion beam 11 of nonmetal ion species, a microsampling unit 3 having a probe 16 that extracts a microsample 43 cut out from a sample 35 by the ion beam 11, a gas gun 2 that discharges a gas for bonding the microsample 43 and the probe 16, a pollution measuring beam column 6A that is connected to the same vacuum vessel 10 to which the ion beam column 1 is connected and irradiates an ion beam irradiation traces by the ion beam column 1 with a pollution measuring beam 13, and a detector 7 that detects characteristic X-rays emitted from the ion beam irradiation traces by the ion beam column 1 upon irradiation with the pollution measuring beam 13.
Abstract:
A method and apparatus for setting a sample observation condition and a method and apparatus for sample observation which allow sample observation by speedily and simply finding an optimum condition while suppressing damage to the sample are provided. The setting of a sample observation condition according to the present invention is realized by an electron beam apparatus acquiring a profile at a predetermined evaluation location of a sample under a reference observation condition, by a processing section judging whether or not the above described acquired profile is located within a predetermined setting range and setting an optimum observation condition to be used for sample observation based on this judgment result. More specifically, locations where the condition can be examined are registered beforehand first and then a jump is made to the corresponding location which is irradiated with an electron beam (hereinafter referred to as “predosing”) at a low magnification, the surface of the sample is charged, enlarged to an observation magnification and secondary electron information on the target location is obtained. After that, secondary electron information is obtained at any time while performing predosing, it is successively judged from the information whether the pattern bottom part can be observed/measured or whether or not the sample is destroyed and an optimum observation condition is thereby found.
Abstract:
One embodiment disclosed relates to an electron beam apparatus for inspection of a semiconductor wafer, wherein substantially an entire area of the wafer surface is scanned without moving the stage. A cathode ray tube (CRT) gun may be used to rapidly (and cost effectively) scan the beam over the wafer. Another embodiment disclosed relates to a high-speed automated e-beam inspector configured to scan the e-beam in one dimension while translating the wafer in a perpendicular direction. The translation may be linear, or alternatively, may be in a spiral path. Other embodiments are also disclosed.
Abstract:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
Abstract:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
Abstract:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
Abstract:
An electron microscope has an electron gun for emitting an electron beam, a specimen holder for holding a specimen thereon, and a deflection coil for applying the electron beam from the electron gun to the specimen on the specimen holder. A controller produces a differential signal representing the difference between a signal from a vibration sensor which detects vibrations of the electron gun and a signal from another vibration sensor which detects vibrations of the specimen holder. The differential signal is added to a deflection signal for the deflection coil for thereby effecting feedforward control of the electron beam to cause the electron beam to reach the specimen on the specimen holder, irrespective of the vibrations of the electron gun and the specimen holder.