Abstract:
The present invention provides a method for manufacturing an LED light bar and an LED light bar thereof. The method includes (1) providing a metal substrate (20) and a plurality of LED lights (40); (2) forming a graphene layer (60) on the metal substrate (20) in such a way that the graphene layer (60) includes hollow sections (62) formed to correspond to the LED lights (40); (3) mounting the LED lights (40) to the metal substrate (20) in the hollow sections (62); and (4) forming silicone layers (80) in the hollow sections (62). The method for manufacturing the LED light bar and the LED light bar thereof according to the present invention use a graphene layer formed on a metal substrate and use silicone layers for planarization and heat transfer so as to effectively enhance heat dissipation performance of the LED light bar and extend lifespan of the LED light bar.
Abstract:
There are provided a resin composition including: (a) a maleimide compound with at least two N-substituted maleimide groups per molecular structure; and (b) a silicone compound with at least one amino group per molecular structure and also provided a prepreg, a laminated plate, and a printed wiring board that are formed by using this resin composition. The multi-layered printed wiring board produced by using the laminated plate produced by laminating and molding the prepreg obtained from the resin composition of the present invention has excellent glass transition temperature, coefficient of thermal expansion, solder heat resistance, and warp characteristics. The multi-layered printed wiring board is useful as a highly integrated printed wiring board for an electronic device.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
A method of registering terminals on an interdigitated chip capacitor (“IDC”) with a plurality of contact pads on a substrate. At least one vertically extending nonconductive abutment surface is formed between adjacent ones of the contact pads. A plurality of grooves projecting outwardly from said a central recess is formed on the substrate top portion. At least one sidewall portion of the IDC is urged into abutting engagement with the at least one abutment surface on the substrate. Another method prevent solder from causing short circuits between adjacent terminals. A plurality of grooves extending laterally outwardly from a central recessed portion are formed. The plurality of grooves defining a plurality of inwardly projecting fingers. A plurality of contact pads on are formed on a respective plurality of fingers. A solder bead is formed on at least some of the plurality of contact pads. The at least one solder bead is isolated from adjacent solder beads and adjacent terminals.
Abstract:
Provided is a method of fabricating an electronic circuit. The method includes preparing a substrate, forming a polymer film on the substrate, patterning the polymer film to form a polymer pattern, and forming an electronic device on the polymer pattern.
Abstract:
A flexible printed circuit may be provided with an integrated heat and pressure spreading layer. The heat and pressure spreading layer may be configured to uniformly spread heat and pressure from a bonding tool across a portion of the flexible printed circuit during bonding of the flexible printed circuit to additional circuitry. During manufacturing of the flexible printed circuit, a sheet of heat and pressure spreading material may be attached to a sheet of flexible printed circuitry and the heat and pressure spreading material and the sheet of flexible printed circuitry may be die cut to form multiple flexible printed circuits each with a heat and pressure spreading layer. An electronic device may be provided with a flexible printed circuit with a heat and pressure spreading layer coupled to a component such as a display.
Abstract:
Disclosed herein are an insulating resin composition for a printed circuit board, a build-up film, a prepreg, and a printed circuit board. More specifically, disclosed herein are a build-up film prepared by using a resin composition containing a cage type silsesquioxane instead of the epoxy resin, and a multilayer printed circuit board including the build-up film or a prepreg.
Abstract:
Provided are a stretchable electric circuit and a manufacturing method thereof The method for manufacturing the stretchable electric circuit includes forming a mold substrate, forming a stretchable substrate having a first flat surface and a first corrugated surface outside the first flat surface on the mold substrate, removing the mold substrate, forming a corrugated wire on the first corrugated surface, and forming an electric device connected to the corrugated wire on the first flat surface.
Abstract:
An interdigitated chip capacitor (“IDC”) assembly including an IDC having a semiconductor block with a top portion, a bottom portion opposite the top portion, a plurality of sidewall portions extending between the top and bottom portions, and a plurality of terminals located on the sidewall portions; and a substrate having a top portion with a plurality of generally flat, vertically extending, nonconductive abutment surfaces thereon, the sidewall portions of the IDC being abuttingly engaged with at least some of the plurality of abutment surfaces.