Abstract:
An electronic control unit (ECU) includes a flexible circuit substrate having a first partition interconnected to a third partition by a second, flexible partition. The electronic control unit further includes a rigidizer having a first partition interconnected to a third partition by a second partition. When the ECU is twice folded, the second, flexible partition of the circuit substrate assumes an approximate ‘U’-shape, resulting in a reduced cracking and splitting rate than the prior art. In various embodiments of the present invention, the assumption of a ‘U’-shaped fold in the second, flexible partition of the circuit substrate is facilitated by multiple apertures in a second rigidizer partition, by a depression in a second rigidizer partition, or by non-slidably affixing a first circuit substrate partition to a first rigidizer partition via a first adhesive and non-slidably affixing a third circuit substrate partition to a third rigidizer partition via a second adhesive.
Abstract:
An apparatus and method for extending the durability and life span of flexible circuitry by limiting the bend radius of the flexible circuitry and distributing the flexure point about an extended portion of the circuitry. The assembly includes one or more flex-limiting members associated with and integrated between the layers of flexible circuitry laminate. A fastener is affixed to the flexible circuitry laminate, operatively coupling the one or more flex-limiting members in position adjacent the flexible circuitry laminate. The flex-limiting member limits flexure of the circuitry, during each individual bend, to or below a predetermined angle, thereby decreasing the rate of failure in the circuitry, for example via short circuit, as a result of repeated or excessive bending.
Abstract:
A flip chip integrated circuit package which provides stress relief for the solder bumps of the package. The package includes an integrated circuit that is mounted to a substrate. The integrated circuit is attached to a plurality of bond pads of the substrate by a number of corresponding solder bumps. The substrate has a first layer that is attached to a second layer. An area that is located between the layers and adjacent to the bond pads is left unattached so that a portion of the first layer can move independent of the remaining portion of the substrate. The unattached area allows the integrated circuit to "float" and expand at a different rate than the substrate when the package is thermally cycled.
Abstract:
Disclosed is a parallel processor packaging structure and a method for manufacturing the structure. The individual logic and memory elements are on printed circuit cards. These printed circuit boards and cards are, in turn, mounted on or connected to circuitized flexible substrates extending outwardly from a laminate of the circuitized, flexible substrates. Intercommunication is provided through a switch structure that is implemented in the laminate. The printed circuit cards are mounted on or connected to a plurality of circuitized flexible substrates, with one printed circuit card at each end of the circuitized flexible circuit. The circuitized flexible substrates connect the separate printed circuit boards and cards through the central laminate portion. This laminate portion provides XY plane and Z-axis interconnection for inter-processor, inter-memory, inter-processor/memory element, and processor to memory bussing interconnection, and communication. The planar circuitization, as data lines, address lines, and control lines of a logic chip or a memory chip are on the individual printed circuit boards and cards, which are connected through the circuitized flex, and communicate with other layers of flex through Z-axis circuitization (vias and through holes) in the laminate.
Abstract:
Disclosed is a parallel processor packaging structure and a method for manufacturing the structure. The individual logic and memory elements are on printed circuit cards. These printed circuit boards and cards are, in turn, mounted on or connected to circuitized flexible substrates extending outwardly from a laminate of the circuitized, flexible substrates. Intercommunication is provided through a switch structure that is implemented in the laminate. The printed circuit cards are mounted on or connected to a plurality of circuitized flexible substrates, with one printed circuit card at each end of the circuitized flexible circuit. The circuitized flexible substrates connect the separate printed circuit boards and cards through the central laminate portion. This laminate portion provides XY plane and Z-axis interconnection for inter-processor, inter-memory, inter-processor/memory element, and processor to memory bussing interconnection, and communication. The planar circuitization, as data lines, address lines, and control lines of a logic chip or a memory chip are on the individual printed circuit boards and cards, which are connected through the circuitized flex, and communicate with other layers of flex through Z-axis circuitization (vias and through holes) in the laminate.
Abstract:
A one-piece electronic module assembly is formed from a substantially rectangular baseplate on which an insulating film is mounted to carry circuit components. An enclosed assembly is completed by initially providing a pair of major bend axes across the baseplate, and forming inwardly extending notches at selected locations along lengthwise edges of the baseplate. The baseplate is bent at the notches to form a front wall, a pair of sidewalls and tabs that overlap the sidewalls. The baseplate is then bent over on itself along the major bend axes and sealed, if necessary, to form a completed assembly.
Abstract:
The invention relates to a printed circuit board disposed on a film serving as the carrier material. A connector strip having a large number of connection pins is disposed on the printed circuit board using surface-mounting technology. Connector strips of this type are widespread in digital technology. In the case of circuits in the fields of power electronics or motor vehicle electronics, connector strips cannot be surface-mounted because of the larger cross-sections of the connections. In a printed circuit board of the type mentioned at the outset, recesses are provided in the film stiffener underneath the solder points, such that when the connection pins of the connector strip are soldered, level differences in the connection pins are compensated by the deformation of the carrier film. With this measure, tensions are compensated for the most part by the deformation of the carrier film, so that connector strips for power electronics and motor vehicle electronics applications can also be surface-mounted.
Abstract:
Flexible printed circuits and methods of fabricating and forming plated thru-holes therein are disclosed. The flexible printed circuits have one or more substantially rigid regions where plated thru-holes are to be formed, the regions being made rigid by the substitution of epoxy glass or other conventional rigid printed circuit board materials in place of the flexible material used for the flexible portions of the circuit. In this manner the thru-holes are formed through conventional printed circuit board layers, allowing plating of the thru-holes using conventional well developed techniques. This process avoids the necessity of plating thru-holes in flexible printed circuit materials currently requiring special equipment and techniques, and further avoids stress concentration at the junction between the rigid plated thru-holes and the adjacent flexible printed circuit. Various methods for forming such circuits and circuits so formed are disclosed.
Abstract:
A flexible circuit assembly and a method of making it in which there are no separate electrical interconnections between the flexible interconnecting cable and the rigid connector. A flexible insulating film is bonded to a surface of the connector member and extends from the connector to provide a flexible interconnecting cable for external electrical connections. A plurality of conductors on the insulating film provides a continuous electrically conductive path thus providing an interfaceless electrical connection between the rigid connector and the flexible interconnecting cable. In the method, a metallic clad insulating film is placed on a surface of a rigid support member which includes a portion which will serve as the connector. The support member also includes a filler block portion in the space designated for the flexible interconnecting cable. The film is selectively bonded to the connector portion of the support member. Conductors are then formed on the insulating film. The filler block is then removed to leave a rigid connector and a flexible interconnecting cable which has a plurality of continuous conductors thereon thereby eliminating a separate electrical connection therebetween.