Abstract:
A method includes forming a hard mask over a base material, and forming an I-shaped first opening in the hard mask. The first opening includes two parallel portions and a connecting portion interconnecting the two parallel portions. Spacers are formed on sidewalls of the first opening. The spacers fill an entirety of the connecting portion, wherein a center portion of each of the two parallel portions is unfilled by the spacers. The hard mask is etched to remove a portion of the hard mask and to form a second opening, wherein the second opening is between the two parallel portions of the first opening. The second opening is spaced apart from the two parallel portions of the first opening by the spacers. The first opening and the second opening are then extended down into the base material.
Abstract:
A wiring substrate may include an insulating layer; a differential signal transmission line including a first wiring formed on a first surface of the insulating layer and a second wiring formed on a second surface of the insulating layer, the first wiring and the second wiring transmitting differential signals; and a ground part including a first ground layer and a second ground layer disposed to be spaced apart from the first wiring by the predetermined distance on the first surface of the insulating layer and a third ground layer and a fourth ground layer disposed to be spaced apart from the second wiring by the predetermined distance on the second surface of the insulating layer.
Abstract:
A planarized cover layer structure of a flexible circuit board includes an insulation layer bonded through a first adhesive layer to a surface of each one of conductive signal lines laid on a substrate of a flexible circuit board. Separation areas respectively formed between adjacent ones of the conductive signal lines are each formed with a filling layer, so that the filling layer provides the first adhesive layer with a planarization height in the separation areas and the planarization height is substantially equal to the height of the conductive signal lines. The filling layer can alternatively be of a height that is higher than the surface of the conductor layer by a covering height so that the first adhesive layer has a planarization height in the separation areas and the planarization height is substantially equal to the sum of the height of the conductive signal lines and the covering height.
Abstract:
A signal line design is described herein. A circuit board may include a first signal line and a second signal line. The first signal line includes a pair of signal lines at a first depth of a section of a circuit board, wherein a centerline extends lengthwise between the pair of signal lines. The second signal line is disposed at a second depth of the circuit board. The second signal line includes a first segment that runs parallel to the first signal line at a first displacement from the center line. The second signal line includes a second segment that runs parallel to the first signal line on the other side of the center line at a second displacement distance from the center line.
Abstract:
An anode array system includes a number of electrically conductive strips arranged in an array to form an anode, each of the plurality of electrically conductive strips having a first end and a second end, electrical connectors at the first end and at the second end of each of the electrically conductive strips, and a substrate at least partially supporting the electrically conductive strips, wherein the substrate is porous.
Abstract:
A printed circuit substrate may be configured with at least one internal lead designed and shaped to reduce solder bridging. The printed circuit substrate can have a plurality of internal leads that each has a continuously curvilinear boundary that defines an isolation channel. The isolation channel may be configured with a uniform distance that separates a first internal lead from an adjacent second internal lead.
Abstract:
A rigid multi-layer printed circuit board (PCB) has an embedded elongated conductor between opposing first and second reference planes. The first and second reference planes are formed of conductive material and are electrically isolated from the conductor by intervening insulative material. Each of the first and second reference planes have a plurality of spaced apart windows extending therethrough, the windows aligned with the elongated conductor.
Abstract:
A microcomputer provided on a rectangular semiconductor board has memory interface circuits. The memory interface circuits are separately disposed in such positions as to extend along the peripheries of the semiconductor board on both sides from one corner as a reference position. In this case, limitations to size reduction imposed on the semiconductor board can be reduced compared with a semiconductor board having memory interface circuits only on one side. Respective partial circuits on each of the separated memory interface circuits have equal data units associated with data and data strobe signals. Thus, the microcomputer has simplified line design on a mother board and on a module board.
Abstract:
A planarized cover layer structure of a flexible circuit board includes an insulation layer bonded through a first adhesive layer to a surface of each one of conductive signal lines laid on a substrate of a flexible circuit board. Separation areas respectively formed between adjacent ones of the conductive signal lines are each formed with a filling layer, so that the filling layer provides the first adhesive layer with a planarization height in the separation areas and the planarization height is substantially equal to the height of the conductive signal lines. The filling layer can alternatively be of a height that is higher than the surface of the conductor layer by a covering height so that the first adhesive layer has a planarization height in the separation areas and the planarization height is substantially equal to the sum of the height of the conductive signal lines and the covering height.
Abstract:
An electrical circuit arrangement provides a substrate and at least two conductive surfaces. The substrate comprises at least one layer disposed between the conductive surfaces. The conductive surfaces form a capacitor and overlap in part and form an overlapping area. In the event of a displacement of the conductive surfaces relative to one another, the resulting overlapping area is largely constant up to a threshold value of the displacement.