Abstract:
A circuit board module includes: a first electronic component of a surface mounting type; a second electronic component of an insertion mounting type including a lead terminal; a circuit board; and a heat transfer body provided in the circuit board. The first electronic component is mounted on a front surface of the circuit board so as to overlap the heat transfer body in a board thickness direction. The heat transfer body is provided so as to transfer heat generated in the first electronic component to a back surface side of the circuit board. The second electronic component is mounted on a back surface of the circuit board. The second electronic component and the heat transfer body are thermally connected to a heat radiation body provided on the back surface side of the circuit board.
Abstract:
An electrical device for soldering to a circuit board with a solder includes a capacitor, a lead frame including a solder dam, and a solder joint electrically coupling the capacitor to the lead frame. The solder dam includes one of a physical barrier to flow or an area of reduced wettability to the solder. The solder dam is between the solder joint and the circuit board. The solder dam is on one or both of a lead portion and main portion of the lead frame. In one embodiment, the first solder dam extends substantially the full width of the first lead portion. The solder dam may be a barrier and/or include a metal oxide. A method of manufacturing the device includes soldering a lead frame to a capacitor with a solder and modifying a surface on the lead frame to include a physical barrier and/or an area of reduced wettability.
Abstract:
Methods, systems, devices, and products for manufacturing an electrical assembly, such as a completed downhole circuit board, for use in well logging. Methods include attaching an electrical component to a printed circuit board by mechanically fastening the electrical component to the printed circuit board. Methods may include using a laser to attach a plurality of legs to contact surfaces. Methods may include applying light from the laser to a material of the printed circuit board to produce heat, including mitigating reflection of the light from the material. Methods include forming a connection between a first electrical component of the electrical assembly and a second electrical component of the electrical assembly by causing heating of an additive manufacturing material by applying light from a laser. The connection may be at least one of: i) an electrical connection; ii) a structural connection; iii) an electrical insulation.
Abstract:
Power amplifier assemblies and components are disclosed. According to some embodiments, a power amplifier assembly (10) is provided that includes a power amplifier (12) having a gate lead (14) with a gate contact surface, a drain lead (13) with a drain contact surface and a source contact surface (15) having a length and width. An extended heat slug (11) is mounted against the source contact surface to conduct heat away (18) from the surface and to extend the electrical path of the source. The extended heat slug has at least a length that is greater than the length of the source contact surface.
Abstract:
A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm×7 cm.
Abstract:
A printed substrate includes a land that is to be soldered. The land includes a plating film that defines a surface of the land. The plating film includes a metal as a main constituent and a pi-acceptor molecule that is dispersed in the plating film. The pi-acceptor molecule has pi-acceptability and causes ligand field splitting equal to or greater than that of 2,2′-bipyridyl in spectrochemical series. A content of the pi-acceptor molecule in the plating film is equal to or greater than 0.1 weight percent, in terms of carbon atoms, with respect to the metal of the plating film.
Abstract:
Provided is a circuit assembly that does not require e.g. bending of a terminal of an electronic component. A circuit assembly includes an electronic component that is to be mounted is connected to a conductive member through a first opening in a state in which its main body is disposed on one side of a substrate covering at least a part of the first opening formed in the substrate, and a first terminal is connected to a conductive pattern (a land) of the substrate, and a second terminal is connected to the conductive member through a second opening formed in the substrate.
Abstract:
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
Abstract:
A surface mount device is disclosed. The surface mount device can include an electronic component operable in an electronic circuit. The surface mount device can also include a heat transfer component thermally coupled to the electronic component. The heat transfer component can have a heat transfer surface configured to interface with a heat sink. In addition, the surface mount device can include a resiliently flexible lead to electrically couple the electronic component to a circuit board. The resiliently flexible lead can be configured to resiliently deflect to facilitate a variable distance of the heat transfer surface from the circuit board, to enable the heat transfer surface and a planar heat transfer surface of another similarly configured surface mount device to be substantially aligned for interfacing with the heat sink.
Abstract:
A method and structure are provided for implementing surface mount components with symmetric reference balance. A first reference and an incoming signal are received in a surface mounted device (SMD) package and a second reference and the outgoing signal are output from the SMD package. A capacitor structure is defined within the SMD package between the first reference and the second reference. The capacitor structure includes a balanced impedance structure between the first reference and the second reference. A component connected between the received incoming signal and output signal is generally centrally located within the capacitor structure.