Abstract:
This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
Abstract:
A wet process for cleaning biomass is disclosed, comprising: introducing biomass feedstock to a vibrating separator, to generate an overflow stream and an underflow stream, wherein the overflow stream comprises biomass and large grit, and wherein the underflow stream comprises fines and small grit; introducing the overflow stream to a kinetic separator, to generate an intermediate biomass stream and a large-grit stream; introducing the underflow stream and elutriation water to a hydroclone separator, to generate a wet biomass-fines stream and a small-grit stream; separating water contained in the wet biomass-fines stream and recycling it as elutriation water, to generate a biomass fines stream; and combining the biomass fines stream with the intermediate biomass stream, thereby generating clean biomass. An alternative embodiment for a dry process to clean biomass is also disclosed. The clean biomass may be used in a wide variety of biorefining processes.
Abstract:
Nanocellulose-reinforced cellulose fibers can increase the strength of hardwood fibers or agricultural-residue cellulose fibers, to simulate the strength of softwood fibers in pulp or pulp products (including composites). In some variations, the invention provides a method of reinforcing cellulose fibers, comprising providing cellulose fibers derived from hardwoods, agricultural residues, or a combination thereof; providing a source of nanocellulose comprising cellulose nanofibrils and/or cellulose nanocrystals; and reinforcing the cellulose fibers with the nanocellulose to increase strength of the cellulose fibers. In some embodiments, the nanocellulose is obtained from fractionating biomass in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid phase; and then mechanically refining the cellulose-rich solids to generate the nanocellulose.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity, hydrophobic cellulose. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and depositing lignin onto cellulose fibers to produce lignin-coated cellulose materials (such as dissolving pulp). The crystallinity of the cellulose material may be 80% or higher, translating into good reinforcing properties for composites. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the hydrophobic cellulose to form completely renewable composites.
Abstract:
The present invention provides a process for fractionating lignocellulosic biomass, comprising: contacting biomass with SO2, water, and optionally a first solvent, to produce intermediate solids; then contacting the intermediate solids with SO2, water, and a second solvent, to produce cellulose-rich solids and a liquid phase comprising hemicelluloses and lignin. The first concentration of SO2 may be lower or higher than the second concentration of SO2. It is desirable to vary the SO2 and solvent concentrations in different stages to optimize the removal of hemicellulose versus lignin. The resulting cellulose-rich material can contain very low hemicellulose, very low lignin, or both low hemicellulose and low lignin. High-purity cellulose is useful both for producing glucose as well as for cellulose products or derivatives. The hemicelluloses may be hydrolyzed to produce monomeric sugars, and the lignin may be recovered as a co-product.
Abstract:
An improved semichemical pulping process is disclosed to reduce washing costs and recovery process costs, while producing equivalent pulp and paper products. In some variations, the invention provides a process for producing a paper product from biomass, comprising: digesting lignocellulosic biomass in the presence of steam and/or hot water to generate an intermediate pulp material and a liquid phase containing extracted hemicelluloses; mechanically refining the intermediate pulp material, to generate a refined pulp material; and introducing the refined pulp material, the liquid phase, and optionally a separate solid material to a paper machine, to produce a paper product. The process optionally employs no washing step. When the liquid phase is washed from the intermediate pulp material or the refined pulp material using an aqueous wash solution, the wash filtrate may be introduced directly or indirectly to the paper machine.
Abstract:
Cellulose precursor materials may be refined (e.g., fibrillated) in an ethanol medium, or other solvent medium, instead of water. Following refining, the solvent may be removed and recycled prior to incorporation into another material, or optionally, following such incorporation. The solvent may assist the incorporation of nanocellulose into another material (e.g., a polymer) for a composite, for example. In some variations, a process comprises fractionating a biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; mechanically treating the cellulose-rich solids, in the presence of a refining solvent, to form cellulose fibrils and/or cellulose crystals, thereby generating a nanocellulose material; recovering and recycling the refining solvent; and recovering the nanocellulose material or incorporating the nanocellulose material into a composite material.
Abstract:
This invention provides a way to deal with acetic acid derived from biomass, for fermentation of cellulosic sugars. In some variations, a process for producing ethanol from lignocellulosic biomass comprises: extracting hemicelluloses and acetic acid from lignocellulosic biomass; hydrolyzing the hemicelluloses, using an acid catalyst or enzymes, to generate hemicellulose monomers and more acetic acid; fermenting acetic acid to lipids using a suitable lipid-producing microorganism, thereby reducing acetic acid concentration; fermenting hemicellulose monomers to ethanol using a suitable ethanol-producing microorganism; and recovering the ethanol. The co-fermentation of acetic acid and sugars may be carried out in a single fermentor or in separate fermentors. The invention may be applied to fermentation products other than ethanol. In some embodiments, the fermentation product can act as an extraction solvent to extract lipids from the lipid-producing microorganism, such as a lipid-producing yeast.
Abstract:
Some variations provide a method of enzymatically converting biomass-derived cellulose to glucose, comprising exposing the biomass-derived cellulose to (i) cellulase enzymes, to hydrolyze the cellulose to glucose; and (ii) an external sulfur-containing compound, to deter bacterial and/or yeast contamination during cellulose hydrolysis. In some embodiments, the sulfur-containing compound includes sulfur dioxide or lignosulfonates. When the sulfur-containing compound includes lignosulfonates, the lignosulfonates may also function as an enzyme surfactant to assist hydrolysis, in addition to deterring bacterial and/or yeast growth/contamination. This method may be applied to cellulose-rich solids obtained from the AVAP® fractionation process, the Green Power+® pretreatment process, or any other source of cellulose-rich solids.
Abstract:
In some variations, the invention provides a process for producing a microcrystalline cellulose material, comprising: fractionating lignocellulosic biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; chemically and/or mechanically treating the cellulose-rich solids to form microcrystalline cellulose having an average crystallinity of at least 60%; and recovering the microcrystalline cellulose as a pharmaceutical excipient. The pharmaceutical excipient may function as an antiadherent, a binder, a coating, or a disintegrant. In some embodiments, the pharmaceutical excipient further comprises a lignin-derived lubricant, glidant, sorbent, preservative, or other component. The pharmaceutical excipient may be present in a pill, tablet, capsule, powder, slurry, or other pharmaceutically effective and acceptable form.