Abstract:
A method to improve CdTe-based photovoltaic device efficiency is disclosed, the method including steps for removing surface contaminants from a semiconductor absorber layer prior to the deposition or formation of a back contact layer on the semiconductor absorber layer, the surface contaminants removed using at least one of a dry etching process and a wet etching process.
Abstract:
An improved feeder system and method for vapor transport deposition that includes at least two vaporizers couple to a common distributor for vaporizing and co-depositing at least any two vaporizable materials as a material layer on a substrate. Composition of the material layer can be controlled by changing the flow of vapors from the respective vaporizers into the distributor to adjust the proportion of respective vapors in the combined vapor prior to deposition. Flow of the vapors from the respective vaporizers into the distributor may be controlled by adjusting the flow of carrier gas transporting the raw material into the vaporizer and/or by adjusting the vibration speed and/or amplitude of the powder feeders that process the raw material.
Abstract:
Provided are photovoltaic devices with polycrystalline type II-VI semiconductor absorber materials including n-type absorber compositions and having p-type hole contact layers are described herein. Methods of treating semiconductor absorber layers and forming hole contact layers are described.
Abstract:
Structures and methods for manufacturing photovoltaic devices by forming perovskite layers and perovskite precursor layers using vapor transport deposition (VTD) are described.
Abstract:
Structures and methods for manufacturing photovoltaic devices by forming perovskite layers and perovskite precursor layers using vapor transport deposition (VTD) are described.
Abstract:
Photovoltaic devices (100) with type ll-VI semiconductor absorber materials (160) having p-type contact layers (180) are obtained by forming a ll-VI absorber layer over a substrate stack (113), wherein the type II material includes cadmium (Cd) and the type VI material includes tellurium (Te); contacting an alkaline wash fluid, comprising a hydroxide, to a second surface of the absorber layer to produce a Cd-rich surface, depositing a p-type contact layer (180) over the absorber layer (160), whereby the p-type contact layer is directly adjacent to the Cd-rich layer, and wherein the p-type contact layer comprises at least one of: PTAA, P3HT, poly-TPD, TFB, TTF-1, TF8-TAA, TIF8-TAA, SGT-407, PCDTBT, SpiroOMeTAD, anthracene-based HTM, polythiophene, semiconducting polymers, NiO, CuSCN, or Cui; and depositing a conductive layer (190) over the p-type contact layer.
Abstract:
Provided are structures and methods for doping polycrystalline thin film semiconductor materials in photovoltaic devices. Embodiments include methods for forming and treating a photovoltaic semiconductor absorber layer.
Abstract:
According to the embodiments provided herein, a photovoltaic device can include a buffer layer adjacent to an absorber layer doped p-type with a group V dopant. The buffer layer can have a plurality of layers compatible with group V dopants.
Abstract:
Methods and devices are described for a photovoltaic device. The photovoltaic device includes a glass substrate, a semiconductor absorber layer formed over the glass substrate, a metal back contact layer formed over the semiconductor absorber layer, and a p-type back contact buffer layer formed from one of MnTe, Cd1-xMnxTe, and SnTe, the buffer layer disposed between the semiconductor absorber layer and the metal back contact layer.
Abstract:
A method to improve CdTe-based photovoltaic device efficiency is disclosed, the method including steps for removing surface contaminants from a semiconductor absorber layer prior to the deposition or formation of a back contact layer on the semiconductor absorber layer, the surface contaminants removed using at least one of a dry etching process and a wet etching process.