Abstract:
A composite sheet material and method for forming the same is provided that includes a substrate, a matrix, and a cover sheet. The substrate has a first face surface, a second face surface, and a plurality of edges, and includes a thermoplastic material. The matrix is attached to the substrate. The matrix includes a support component having a first melting point, and a thermoplastic component having a second melting point. The second melting point is less than the first melting point. The cover sheet imparts one or more surface characteristics to the composite sheet material during thermo-pressure formation of the composite sheet material.
Abstract:
A contact nozzle for coating an elastic strand with an adhesive. Air is discharged at the adhesive in contact with the strand, causing the adhesive to spread around the periphery of the strand. The air assists with release of the adhesive from the nozzle and also cleans the nozzle to discourage adhesive build-up on the nozzle.
Abstract:
A tool and a method are described for sheathing an elongated product available by the measured length, in particular in the form of a fiber or a fiber bundle, with at least one thermoplastic layer, with a wetting unit comprising at least one contact zone that can be filled with a flowable thermoplastic, through which the elongated product can be guided for the purpose of wetting with the thermoplastic in the form of a continuously progressing strand. The invention has a first feeding area for the elongated product and a second feeding area for the thermoplastic to emerge into the at least one contact zone. The contact zone comprises at least one outlet area and has a means is provided along the second feeding area, by which the thermoplastic can be introduced, subject to pressure, into the contact zone in the direction of the outlet area. The elongated product guided into the contact zone is carried along lengthwise through the outlet area by the thermoplastic solely by way of frictional force between the thermoplastic and the elongated product.
Abstract:
In a method for making a wire guide, a fluoropolymer coating is removed from a distal section of an FP coated core wire to expose a metallic portion. A polymer coating is applied to a proximal section of the FP coated core wire such that the polymer coating overlays at least a portion of the FP coating, and to the distal section of the FP coated core wire including the exposed metal portion. The polymer coating is removed from the FP coating to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating. A hydrophilic coating may be applied to the distal portion over the polymer coating.
Abstract:
The present invention may manufacture a composite pipe by forming an adhesive layer and a resin layer on an outer surface of a metal pipe, and although the composite pipe is wound in a ring shape after the composite pipe is manufactured, a circular cross sectional shape may be maintained without deformation, and after the composite pipe is straightened for the purpose of construction, separation or buckling may be prevented, resulting in excellent transportability and constructability of a product.
Abstract:
A steel pipe has a multi-layer coating including: a plating film formed on the surface of the steel pipe; a chemical conversion coating covering the plating film; a primer coating covering the chemical conversion coating and formed from a curable epoxy resin composition composed mainly of an epoxy compound and having an amide or imide bond introduced; and a polyamide resin coating covering the primer coating. The multi-layer coating can significantly enhance the adhesion force of the polyamide coating compared to the conventional pipe.
Abstract:
A die and a method for impregnating fiber rovings with a polymer resin are disclosed. The die includes a manifold assembly (220), an impregnation zone (250), and a gate passage (270). The manifold assembly (220) flows the resin therethrough, and includes a channel (222). The impregnation zone (250) is in fluid communication with the manifold assembly (220), and is configured to impregnate the roving with the resin. The gate passage (270) is between the manifold assembly (220) and the impregnation zone (250), and flows the resin from the manifold assembly (220) such that the resin coats the roving. The gate passage (270) includes a projection (300). The projection (300) is configured to diffuse resin flowing through the gate passage (270).
Abstract:
Described herein is a media composition. The media composition includes a substrate and an ink receiving layer that includes binder that includes an ethylene-vinyl alcohol co-polymer with a glass transition temperature of 75 degrees Celsius or less, a melting point temperature of 175 degrees Celsius or less, and/or a crystallization temperature of 150 degrees Celsius or less. The ink receiving layer can be applied to a substrate using extrusion techniques.
Abstract:
A method for producing an antiglare film includes: a step of preparing coating liquids comprising components capable of being unevenly distributed in an antiglare layer-forming coating liquid and a low-refractive index layer-forming coating liquid, respectively; a coating step of applying the low-refractive index layer-forming coating liquid as an upper layer and the antiglare layer-forming coating liquid as a lower layer on a support to form a coating layer; and a drying step of drying the coating layer and making the coating layer cause phase-separation so as to unevenly distribute the components and form an antiglare layer and a low-refractive index layer. By the production method, an antiglare film which suppresses reflection and glaring of external light in a display and whitening due to irregular reflection can be produced at a low cost.
Abstract:
The present disclosure relates to extrusion coating systems, extrusion coated substrates, and processes for making the same. In some aspects, extrusion coating systems as described herein may include an at least partially insulated outlet wall, which may facilitate production of coated substrates exhibiting a very desirable surface texture and appearance. Coated substrates of the present invention may be utilized in a variety of end applications, including, but not limited to, interior and exterior construction materials for homes, buildings, and furniture.