Abstract:
The invention concerns a photolithography fabrication method enabling production of patterns in a photosensitive resin layer (601) placed on a substrate (600). The patterns (607) comprise flanks (608) inclined relative to a normal ({right arrow over (n)}) relative to the principal plane of the substrate and which have an angle of inclination (θ) far greater to that of the patterns obtained according to the prior art. The invention also concerns a device allowing said method to be executed.
Abstract:
A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.
Abstract:
A process for patterning dielectric layers of the type typically found in optical coatings in the context of MEMS manufacturing is disclosed. A dielectric coating is deposited over a device layer, which has or will be released, and patterned using a mask layer. In one example, the coating is etched using the mask layer as a protection layer. In another example, a lift-off process is shown. The primary advantage of photolithographic patterning of the dielectric layers in optical MEMS devices is that higher levels of consistency can be achieved in fabrication, such as size, location, and residual material stress. Competing techniques such as shadow masking yield lower quality features and are difficult to align. Further, the minimum feature size that can be obtained with shadow masks is limited to ˜100 &mgr;m, depending on the coating system geometry, and they require hard contact with the surface of the wafer, which can lead to damage and/or particulate contamination.
Abstract:
Three-dimensional structures of arbitrary shape are fabricated on the surface of a substrate through a series of processing steps wherein a monolithic structure is fabricated in successive layers. A first layer of photoresist material is spun onto a substrate surface and is exposed in a desired pattern corresponding to the shape of a final structure, at a corresponding cross-sectional level in the structure. The layer is not developed after exposure; instead, a second layer of photoresist material is deposited and is also exposed in a desired pattern. Subsequent layers are spun onto the top surface of prior layers and exposed, and upon completion of the succession of layers each defining corresponding levels of the desired structure, the layers are all developed at the same time leaving the three-dimensional structure.
Abstract:
A laminated substrate is prepared, the laminated substrate having two layers including a first film and a second film in tight contact with the first film, the second film being made of a material capable of being etched with synchrotron radiation light. A mask member with a pattern is disposed in tight contact with the surface of the second film of the laminated structure or at a distance from the surface of the second film, the pattern of the mask member being made of a material not transmitting the synchrotron radiation light. The synchrotron radiation light is applied on a partial surface area of the second film via the mask member to etch the second film where the synchrotron radiation light is applied and to expose a partial surface area of the first film on the bottom of an etched area.
Abstract:
A process for patterning dielectric layers of the type typically found in optical coatings in the context of MEMS manufacturing is disclosed. A dielectric coating is deposited over a device layer, which has or will be released, and patterned using a mask layer. In one example, the coating is etched using the mask layer as a protection layer. In another example, a lift-off process is shown. The primary advantage of photolithographic patterning of the dielectric layers in optical MEMS devices is that higher levels of consistency can be achieved in fabrication, such as size, location, and residual material stress. Competing techniques such as shadow masking yield lower quality features and are difficult to align. Further, the minimum feature size that can be obtained with shadow masks is limited to null100 nullm, depending on the coating system geometry, and they require hard contact with the surface of the wafer, which can lead to damage and/or particulate contamination.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
A MEMS probe and manufacturing method thereof are provided. The method is mainly to form connected first-level, second-level, and third-level pin grooves on both sides of the silicon substrate through an etching process, followed by two electroplating processes to deposit nickel-cobalt-phosphorus alloy in the first-level pin groove to form the tip of the microprobe, and to deposit nickel-cobalt alloy in the second-level pin groove and the third-level pin to form the pin head and pin arm, thereby forming a three-level microprobe. A circuit substrate made of ceramic material is disposed with at least one window, the surface of the circuit substrate adjacent to the window is provided with a plurality of circuit pads, and the circuit substrate is abutted to the pin arm of the microprobe. The silicon substrate is then removed, to form a plurality of cantilever microprobes made of nickel-cobalt-phosphorus alloy and nickel-cobalt alloy on the circuit substrate.
Abstract:
The disclosure describes a soft-matter electronic device having micron-scale features, and methods to fabricate the electronic device. In some embodiments, the device comprises an elastomer mold having microchannels, which are filled with an eutectic alloy to create an electrically conductive element. The microchannels are sealed with a polymer to prevent the alloy from escaping the microchannels. In some embodiments, the alloy is drawn into the microchannels using a micro-transfer printing technique. Additionally, the molds can be created using soft-lithography or other fabrication techniques. The method described herein allows creation of micron-scale circuit features with a line width and spacing that is an order-of-magnitude smaller than those previously demonstrated.