Abstract:
A method for inducing continuous separation of copper ions from copper using UV-light source, comprising the following steps: (1) cutting apiece of copper into wires or slices for immersing into a vessel containing water; switching on a stirrer for stirring the water continuously and keeping the copper being immersed in the water; (2) turning on the UV-light source for irradiating the copper and the water continuously; appearing a large amount of white precipitate in the water; (3) filtering the solution; detecting the filtered solution, a certain concentration copper ions in the filtered solution are found; adding hydrochloric acid by drops into the unfiltered original solution, the white precipitate is dissolved and copper ions are detected. The invention makes the copper separate out copper ions continuously and can be applied to copper ion disinfection for swimming-pool water, scenic water and cooling water, etc.
Abstract:
A purifying method for photochemical elimination of xenobiotics present in water. The purifying device is used which has a photochemical reactor unit having at least one inlet for contaminated water and one outlet for purified water, it provides a flow path for continuously flowing water from said inlet to said outlet, and is equipped with a radiation source module providing ultraviolet radiation in a wavelength range ranging from 100 to 280 nm. The method includes performing ultrafiltration, thereby removing suspended and solvated macromolecular matter from the water; conducting the permeate via the at least one inlet into the photochemical reactor unit; subjecting the water flowing from said inlet to said outlet to ultraviolet radiation at wavelengths ranging from 100 to 280 nm, thereby generating hydroxyl radicals initiating degradation of said xenobiotics; and supplying air or dioxygen into the water, thereby enhancing the initiated oxidative degradation of said xenobiotics.
Abstract:
Methods are provided for disinfecting water mains using ultraviolet (UV) light. One or more UV light sources are provided and secured to a movable device that moves axially in a pipe. The frequency and intensity of the UV light is determined based on characteristics of the pipe, such as its material and size. The rate at which the movable device moves through the pipe is also determined so that the interior surface of the pipe is properly disinfected. The movable device is remotely caused to move through the pipe.
Abstract:
A liquid purification system is provided that includes a liquid holding device configured to hold liquid and an ultra-violet (UV) disinfecting system disposed in a base adjacent to a closed end of the liquid holding device. A power-generating system wirelessly powers the UV disinfecting system.
Abstract:
A mixing device for a water treatment facility with an open channel, with a base body which is designed in a plate-shape or strip-shaped manner for attachment to a wall of a channel such that a lower face which faces towards the wall of the channel during operation and an upper face which faces away from the wall of the channel during operation, whereby a plurality of protrusions is provided which extend from the base body, which are inclined away from the lower face and which extend over a plane formed by the upper face, and in that a plurality of recess is provided, and whereby each recess is arranged between two adjacent protrusions.
Abstract:
Provided is a standalone integrated water treatment system for a distributed water supply including a filter input, a coagulation system in operative connection with the filter input, wherein the water is subjected to a coagulation process to create pin floc from suspensions in the water. A maturation buffer tank in operative connection with the coagulation system aggregates floc in size within the water. A spiral separator separates the water into two water streams, a first stream of water having most of the floc removed, and a second stream of water which includes a concentrated amount of the floc. An optional filtration system is configured to receive the first stream of water and perform a filtration operation thereon. A sterilization system is configured to perform a sterilization operation on the first stream of water. The water is then output from the sterilization system as potable water.
Abstract:
A water purifier that includes a housing having an inlet and an outlet opposing each other, a filter disposed in the housing and connected to the inlet to reduce the flow rate of water introduced into the filter from the inlet, a separator disposed in the housing to store water discharged from the filter, a supply conduit disposed in the housing and connected to a central portion of the separator to provide a path through which the water in the separator is drained, and an ultraviolet light emitting diode (UV LED) module disposed in the housing to irradiate UV rays toward the water stored in the separator.
Abstract:
According to one embodiment, an ultraviolet water treatment apparatus includes an ultraviolet lamp unit provided with a first plumbing flange coupling on each of both ends thereof, and further provided therein with an ultraviolet irradiation tube including an ultraviolet lamp and a lamp protective tube configured to protect the ultraviolet lamp, and a cleaning device drive unit provided with a second plumbing flange coupling on each of both ends thereof and configured to drive a cleaning device configured to clean a surface of the lamp protective tube. The ultraviolet lamp unit and the cleaning device drive unit are coupled with each other on the first and second plumbing flange couplings.
Abstract:
Disclosed herein is a ballast water treatment device. The device includes a filtering unit filtering ballast water introduced into a ship using a filter, a vortex generating unit generating an artificial vortex in the ballast water filtered by the filtering unit, and an ultraviolet treatment unit having an ultraviolet lamp which sterilizes the ballast water discharged from the vortex generating unit using ultraviolet rays, thus preventing secondary contamination resulting from by-products, preventing a ballast tank from becoming contaminated, affording effective maintenance, and making it convenient to control. Further, an artificial vortex is formed in the ballast water when it is mixed, thus allowing a large quantity of ultraviolet rays to be radiated onto the ballast water passing through the ultraviolet treatment unit, therefore improving a sterilization effect.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.