Abstract:
The projection lithographic method for producing integrated circuits and forming patterns with extremely small feature dimensions includes an illumination sub-system (36) for producing and directing an extreme ultraviolet soft x-ray radiation λ from an extreme ultraviolet soft x-ray source (38); a mask stage (22) illuminated by the extreme ultraviolet soft x-ray radiation λ produced by illumination stage and the mask stage (22) includes a pattern when illuminated by radiation λ. A protection sub-system includes reflective multilayer coated Ti doped high purity SiO2 glass defect free surface (32) and printed media subject wafer which has a radiation sensitive surface.
Abstract:
What is disclosed includes OD-doped synthetic silica glass capable of being used in optical elements for use in lithography below about 300 nm. OD-doped synthetic silica glass was found to have significantly lower polarization-induced birefringence value than non-OD-doped silica glass with comparable concentration of OH. Also disclosed are processes for making OD-doped synthetic silica glasses, optical member comprising such glasses, and lithographic systems comprising such optical member. The glass is particularly suitable for immersion lithographic systems due to the exceptionally low polarization-induced birefringence values at about 193 nm.
Abstract:
A method of manufacturing a GRIN lens includes a forming a wet gel from an alcohol solution containing a silicon alkoxide, a dopant alkoxide, and an aluminum alkoxide; dissolving by leaching the dopant and aluminum away from an outer peripheral surface of the wet gel to provide a refractive index distribution; forming a dry gel by drying the wet gel; forming a glass preform by firing the dry gel; and wire-drawing the perform. In the step of leaching, most aluminum dissolves from the wet gel, thereby increasing the porosity of the dry gel and preventing cracking during sintering and foaming during wire-drawing.
Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
The invention relates to a multimode optical fibre having a refractive index profile, comprising a light-guiding core surrounded by one or more cladding layers. The present invention furthermore relates to an optical communication system comprising a transmitter, a receiver and a multimode optical fibre.
Abstract:
A silica glass containing TiO2, which has a fictive temperature of at most 1,200° C., a F concentration of at least 100 ppm and a coefficient of thermal expansion of 0±200 ppb/° C. from 0 to 100° C.A process for producing a silica glass containing TiO2, which comprises a step of forming a porous glass body on a target quartz glass particles obtained by flame hydrolysis of glass-forming materials, a step of obtaining a fluorine-containing porous glass body, a step of obtaining a fluorine-containing vitrified glass body, a step of obtaining a fluorine-containing formed glass body and a step of carrying out annealing treatment.
Abstract:
An optical fiber comprises a photosensitive core that includes a concentration of a first material that increases the refractive index of the core and a concentration of a second material that is other than boron and that reduces the refractive index of the core. A cladding is disposed about the core for tending to confine light to the core. The fiber also includes at least one longitudinally extending region having a thermal coefficient of expansion that is different from the thermal coefficient of expansion of the cladding. In another embodiment, the core includes a concentration of germanium and a concentration of boron. Also disclosed is a polarization-maintaining double-clad (PM DC) fiber comprising one or both of at least one circular axially extending stress inducing region(s) and an inner cladding comprising a circular outer perimeter. Fibers according to the invention can include a rare earth dopant for emitting light of a selected wavelength responsive to being pumped by pump light of a pump wavelength that is different than the selected wavelength.
Abstract:
Conventional TiO2—SiO2 glass contains hydrogen atoms substantially, and during deposition under ultrahigh vacuum condition, the hydrogen molecules will diffuse in the chamber, and H2 molecules will be taken into a film thereby formed. Hydrogen molecules will readily diffuse, and the optical characteristics of the multilayer film are likely to be thereby changed. In an optical material for EUV lithography, a multilayer film is coated by ion beam sputtering on a silica glass having a TiO2 concentration of from 3 to 12 mass % and a hydrogen molecule content of less than 5×1017 molecules/cm3 in the glass.
Abstract:
A silica glass containing from 3 to 10 mass % of TiO2, which has a coefficient of thermal expansion from 0 to 100° C., i.e. CTE0 to 100, of 0±300 ppb/° C. and an internal transmittance per mm in thickness within a wavelength region of from 200 to 700 nm, i.e. T200 to 700, of at most 80%.
Abstract:
A method for forming EUV LITHOGRAPHY GLASS STRUCTURES WITH VOIDS is disclosed which includes forming a slurry mixture including silica soot particles, and inserting the slurry mixture into a casting mold. The method provides low weight mass reduced rigid glass structures with beneficial thermal stability. The casting mold includes therein a casting form. The casting form is adapted to provide selected geometry void spaces within the glass lithography structure. The slurry mixture is dried to form a green ware object. The casting form is removed from the green ware and the green ware object is consolidated into a lithography glass structure with voids.