Abstract:
The present invention provides an optical fiber providing high photosensitivity in the absence of hydrogen loading as well as a low numerical aperture. One aspect of the present invention relates to an optical fiber including a core, the core comprising silica doped with at least about 6 mol % germania and at least about 0.9 wt % fluorine; and a cladding surrounding the core. The optical fiber of the present invention is suitable for the production of fiber Bragg gratings.
Abstract:
Methods, apparatus and precursors for producing substantially water-free silica soot, preforms and glass. The methods and apparatus make substantially water-free fused silica preforms or glass by removing water as a reaction product, removing water from the atmosphere, removing water from the transport process, or combinations thereof. In a first embodiment, substantially water-free soot, preforms or glass are achieved by using a hydrogen-free fuel, such as carbon monoxide, in the deposition process. In another embodiment, a soot producing burner has parameters that enable operation on a substantially hydrogen-free fuel. End burners, which minimize water production, are also described. Such water-free methods are useful in depositing fluorine-doped soot because of the low water present and the efficiency in which fluorine is incorporated. In another embodiment, glassy barrier layer methods and apparatus are described for minimizing dopant migration, especially fluorine. Laser and induction methods and apparatus for forming the barrier layer are depicted. A chlorine, fluorine and silica precursor, such as chlorofluorosilane, may be utilized to form fluorinated soot. Other methods and apparatus are directed to combinations of conventional and substantially water-free processes. One embodiment is directed to combustion enhancing additives for addition to the substantially hydrogen-free fuels. The methods and apparatus in accordance with the invention are particularly useful for producing photomask substrates and optical fiber preforms.
Abstract:
The invention provides coated optical lithography elements and methods of coating optical elements, and particularly optical photolithography elements for use in below 240 nm optical photolithography systems utilizing vacuum ultraviolet light (VUV) lithography wavelengths no greater than about 193 nm, such as VUV projection lithography systems utilizing wavelengths in the 193 nm or 157 nm region. The optical devices manipulate vacuum ultraviolet lithography light less than 250 nm utilizing a deposited silicon oxyfluoride film. The deposited silicon oxyfluoride optical coating assists in the manipulation of incident light and protects the underlying optical materials, layers, and surfaces.
Abstract:
A co-doped silicate optical waveguide having a core including silica, and oxides of aluminum, germanium, erbium and thulium. The composition concentrations are: Er from 15 ppm to 3000 ppm; Al from 0.5 mol % to 12 mol %; Tm from 15 ppm to 10000 ppm; and Ge from 1 mol % to 20 mol %. In a specific embodiment, the concentration of Er is from 150 ppm to 1500 ppm; Al is from 2 mol % to 8 mol %; and Tm is from 15 ppm to 3000 ppm. A boron-less cladding surrounds the core.
Abstract:
Disclosed is a method for fabricating high-purity silica glass using a sol-gel processing that includes the steps of: (a) mixing a deionized water with a fluorine compound and a dispersion agent to prepare an aqueous premix solution; (b) mixing the aqueous premix solution with a fumed silica; (c) mixing the resulting mixture to form a dispersed sol; (d) aging the sol at the ambient temperature to stabilize silica particles; and, (e) removing air voids from the sol and adding a gelation agent.
Abstract:
A synthetic quartz glass for optical use, to be used by irradiation with light within a range of from the ultraviolet region to the vacuum ultraviolet region, which contains fluorine, which has a ratio of the scattering peak intensity of 2250 cmnull1 (I2250) to the scattering peak intensity of 800 cmnull1 (I800), i.e. I2250/I800, of at most 1null10null4 in the laser Raman spectrum, and which has an absorption coefficient of light of 245 nm of at most 2null10null3 cmnull1.
Abstract translation:一种用于光学用的合成石英玻璃,其用于通过在含有氟的紫外线区域至真空紫外线区域的范围内的光照射而使用,该散射峰强度比例为2250cm <上标> -1 >(I <下标> 2250 highlight>)到800 cm <上标> -1>(I <下标> 800 highlight>)的散射峰强度,即I <下标> 2250 highlight> / I 在激光拉曼光谱中,最多为1×10 <上标> -4>的<下标> 800 highlight>,其吸光系数为245nm,最多为2×10 <上标> -3> cm -1>。
Abstract:
An optical waveguide including a core having silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm. The non-fluorescent rare-earth ion may be La. Exemplary compositions concentrations are Er is from 15 ppm to 3000 ppm, Al is from 0.5 mol % to 12 mol %, La is less than or equal to 2 mol %, Tm is from 15 ppm to 10,000 ppm; and the Ge is less than or equal to 15 mol %. The core may further include F. An exemplary concentration of F is less than or equal to 6 anion mol %.
Abstract:
High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed. The inventive silicon oxyfluoride glass is transmissive at wavelengths around 157 nm, making it particularly useful as a photomask substrate at the 157 nm wavelength region. The inventive photomask substrate is a “dry,” silicon oxyfluoride glass which contains doped O2 molecules and which exhibits very high transmittance and laser transmission durability in the vacuum ultraviolet (VUV) wavelength region. In addition to containing fluorine and having little or no OH content, the inventive silicon oxyfluoride glass suitable for use as a photomask substrate at 157 nm contains intersticial O2 molecules which provide improved endurance to laser exposure. Preferably the O2 doped silicon oxyfluoride glass is characterized by having less than 1×1017 molecules/cm3 of molecular hydrogen and low chlorine levels.
Abstract:
A non-porous, transparent glass-ceramic body that is consolidated from a predominately silica-based preform (SiO2+GeO2 85-99.0 wt. %) containing rare earth fluoride crystals embedded within by solution chemistry. The glass ceramic body is suited for making fibers for optical amplifiers.
Abstract:
A nonlinear optical silica material mainly consisting of SiO2—GeO2 to which hydrogen or halogen element X is added. Oxygen bonded to Ge contained in the nonlinear optical silica material is replaced by H or X, and one Ge has two Ge—O bonds and one Ge—H (or Ge—X) bond at Ge· points where nonlinearity is exhibited in the silica material. The Ge—H (or Ge—X) bond does not relate to a crystal network, so that when the polarity is oriented in order to exhibit nonlinearity at Ge·, an electric field to be applied can be lowered, and when a optical semiconductor hybrid element or the like is produced, other portions of the semiconductor elements can be prevented from being broken or degraded in performance. An insulating film can be interposed between the semiconductor substrate and the nonlinear optical silica film to prevent undesired impurities from dispersing into the semiconductor substrate and other elements and preventing a defect from being caused in the crystal of the substrate due to the silica film.