Abstract:
A rocker arm configured to perform a first event and a second event against a valve bridge assembly operably associated with first and second engine valves includes a rocker arm body configured to rotate about a rocker shaft. The rocker arm body includes a first event rocker arm assembly comprising a hydraulic capsule in a bore, and a second event rocker arm assembly. The first event rocker arm assembly is configured to selectively engage the valve bridge assembly to open the first and second engine valves.
Abstract:
Systems for valve actuation in internal combustion engines provide configurations for hydraulic lash adjusters and valve actuation valvetrain components that are particularly suitable for prevention of HLA jacking in lost motion cam environments and in valve bridge environments. In one implementation, a rocker arm may transmit motion from a lost motion cam having main event and auxiliary event lobes. Main event motion is transmitted to two engine valves through the rocker arm, a lash adjuster, lash adjuster loading component and valve bridge, which define part of a first load path. Braking motion is transmitted to one of the engine valves through an inboard valve actuator and bridge pin, which define part of a second load path. The HLA is thus disposed in a separate load path from the braking valve load and the lash adjuster loading component keeps the lash adjuster under a constant compressive force to prevent jacking.
Abstract:
A variable valve train module selectively controls the opening and closing of a valve of an engine. The variable valve train module includes a drive element configured to be driven by a cam which rotates on a camshaft, a pump which is driven by the drive element, and a hydraulic control unit. The hydraulic control unit is configured to control the engine valve. The hydraulic control unit has a high pressure chamber containing hydraulic fluid which is selectively pressurized by the pump. The hydraulic control unit also has a control valve which is configured to depressurize the high pressure chamber, and a damper which is configured to increase an effective volume of the high pressure chamber when a pressure in the high pressure chamber exceeds a threshold value.
Abstract:
A fast acting valve train system for valve deactivation is provided that includes an actuator together with a switchable rocker arm. The actuator, controlled by the engine control unit and mounted to a structural housing, contains an actuator pin that retracts or extends facilitating either a deactivation or reactivation valve event. The switchable rocker arm is a two arm design that includes cam side and valve side arms that are coupled together with a locking mechanism assembly that interfaces with the actuator pin. The system is capable of fast switching times to meet the increased demands of cylinder deactivation systems.
Abstract:
A rocker arm comprising a supply path that communicates with a first lash bore and a first spool bore. A spool is in the spool bore. A hydraulic lash device is in the first lash bore, wherein an outer body is configured to collapse during a first valve lift profile when receiving a low pressure fluid, and wherein the outer body and the inner body are configured to cooperate rigidly when receiving a high pressure fluid during a second valve lift profile. The spool is movable to a first spool position to align the spool notch with a first spool path and a second spool path, and the spool is movable to a second spool position to align the spool notch with the second spool path and an accumulator path. The supply path in to the rocker arm is the only source of fluid to the spool.
Abstract:
A hollow rocker shaft including a central opening defined by a radially inner surface and a separator secured in the central opening of the rocker shaft is provided. A radially outer surface of the separator engages the radially inner surface of the rocker shaft via a press-fit. The separator divides the central opening of the rocker shaft into (1) a first chamber extending between a first chamber axial end and the separator, and (2) a second chamber extending between a second chamber axial end and the separator. The separator includes an orifice defined between the first chamber and the second chamber that provides fluid connection between the first chamber and the second chamber.
Abstract:
A cylinder valve system in an engine is provided. The cylinder valve system includes a first oil pressurized bore corresponding to a cylinder valve and in fluidic communication with a control valve assembly, the control valve assembly comprising at least one hydraulic valve and a second oil pressurized bore corresponding to the cylinder valve and in fluidic communication with the control valve assembly.
Abstract:
An assembly clip for holding together a stationary hydraulic lash adjuster (SHLA) and a roller finger follower (RFF) in a valve train of an internal combustion engine (ICE) is provided. The SHLA has a pivot, and the RFF has a pivot cap configured to fit around the pivot. The assembly clip includes a first attachment section and a second attachment section configured to engage with the pivot cap and pivot, respectively, to attach the assembly clip to the RFF and SHLA, respectively. When assembled, the pivot and the pivot end are substantially located between the first attachment section and the second attachment section, the pivot cap covering at least a portion of the pivot. The assembly clip is made of an oil soluble material such that it may dissolve and break away after the valve train is assembled into the ICE, and the assembly clip no longer serves a function.
Abstract:
A lash adjuster includes a cylindrical body, a cylindrical plunger, a low pressure chamber defined in the plunger, a high pressure chamber defined in a hollow lower interior of the body and filled with an operating fluid, a check valve allowing the operating fluid to flow into the high pressure chamber when in a valve-opened state and cutting off flow of the operating fluid from the high pressure chamber into the low pressure chamber when in a valve-closed state. A retainer of the check valve includes a base plate and a cylindrical portion extending upward from an outer circumferential edge of the base plate so as to surround the valve element. The base plate includes a central portion on which the valve element is placed and which has an upper surface formed with a swollen portion. The cylindrical portion has a plurality of openings formed through it circumferentially equiangularly.
Abstract:
A valve control system (15) in which there is provided a deactivating rocker arm (51) disposed beneath a conventional, upper rocker arm (27), and disposed within a module housing (17). The deactivating rocker arm includes a latch tab (63) and when the latch tab engages (FIG. 3) a latch member (65), the system operates in a normal, valve activating mode. When the latch member is in an unlatched condition (FIG. 4), the deactivating rocker arm pivots, compressing the valve return spring (41), which thereafter serves as the required lost motion spring, biasing the deactivating rocker arm (51) and lash compensation device (35) back toward their normal position.