Abstract:
The present invention relates to an interferometer, comprising at least a beamsplitter (10), at least one end reflector (11) for returning beams (S2, S3), and a set of reflectors (14, 15) for reflecting the beams (S2, S3) between the beamsplitter (10) and the end reflector (11) or the end reflectors, at least some of said set of reflectors (14, 15) being adapted to be rotatable around an axis (ω). Said set of reflectors comprises two angle reflectors (14, 15), constituted by plane reflectors, and the said end reflector (11) is or the end reflectors are an angle reflector constituted by plane reflectors (11′, 11″). An angle line of the end reflector (11) is or the angle lines of end reflectors are arranged perpendicular to an angle line of both of the angle reflectors (14, 15).
Abstract:
Disclosed are an array and a method for the spectrally resolving detection of a sample (22) that is illuminated by means of an illuminating radiation (12) by detecting a sample radiation (24) emitted by the sample (22). Said array comprises an illuminating beam path via which illuminating radiation (12) can be delivered to the sample (22) from a lighting source (10, 10′), and an observation beam path via which sample radiation (24) can be delivered to a detector (40) as observation radiation. An interferometer (30) that is disposed in a section of the observation beam path, which does not comprise the sample (22), splits incident input interferometer radiation into two portions by means of an interferometer beam splitter, directs said two radiation portions via two paths which are provided with radiation-guiding means (34, 36) and whose effective path length difference can be modified, and superimposes the two radiation portions in a jointly interfering manner so as to form an output interferometer radiation such that the spectral distribution of the observation radiation (24) impinging a specific point of the detector (40) can be modified by modifying the effective path length difference. The interferometer (30) is arranged in a beam path section that is common to the illuminating beam path and the observation beam path such that the effective path length difference in the illuminating beam path changes when the effective path length difference is modified in the observation beam path.
Abstract:
The tilt-compensated interferometers of the present invention are novel variations of Michelson's interferometer that use tilt- and shear-compensation to provide excellent photometric accuracy even when there are imperfections in the scanning motion used to produce variation of path difference. The tilt-compensation mechanism of the present invention consists of antiparallel reflections from a beamsplitter element and a roof reflector element, which elements are held rigidly in alignment. Several particularly useful embodiments of the invention are described. Other advantages of the present invention include photometric stability and reduced cost because manual alignment is not required. This interferometer has applications in spectrometry, spectral imaging and metrology.
Abstract:
A multifunctional infrared spectrometer system has an interferometer which receives the infrared beam from a source and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors. A multi-position mirror element mounted at a junction position receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors. One of the branch beam paths may include a sample holder at the sample position which can index between a position at which a sample is analyzed, to a reference material position, to a pass-through position for calibration purposes. The multi-position mirror element may also be indexed to direct the beam on a branch path to a fiber optic cable which has a probe at the end of it which may be inserted in a sample fluid or powder to be analyzed, with the reflected light from the probe being directed back on an optical fiber cable to a detector at the spectrometer. The multi-position mirror element may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a solid sample, with the reflected light from the sample being directed by the surfaces of the integrating sphere to a detector. A detector may be mounted to detect the light transmitted through the sample to obtain measurements of both reflected and transmitted infrared light at the sample.
Abstract:
A multifunctional infrared spectrometer system has an interferometer which receives the infrared beam from a source and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors. A multi-position mirror element mounted at a junction position receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors. One of the branch beam paths may include a sample holder at the sample position which can index between a position at which a sample is analyzed, to a reference material position, to a pass-through position for calibration purposes. The multi-position mirror element may also be indexed to direct the beam on a branch path to a fiber optic cable which has a probe at the end of it which may be inserted in a sample fluid or powder to be analyzed, with the reflected light from the probe being directed back on an optical fiber cable to a detector at the spectrometer. The multi-position mirror element may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a solid sample, with the reflected light from the sample being directed by the surfaces of the integrating sphere to a detector. A detector may be mounted to detect the light transmitted through the sample to obtain measurements of both reflected and transmitted infrared light at the sample.
Abstract:
An interferometer includes a beamsplitter for splitting a source beam into a test beam and a reference beam, an imaging device for detecting an interference pattern, a mirror disposed in a path of the test beam for reflection of the test beam toward the imaging device, a micromirror disposed in a path of the reference beam for reflection of a portion of the reference beam toward the imaging device, and a focusing mechanism disposed for focusing the reference beam on the micromirror. The micromirror has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the reference beam focused thereon by the focusing mechanism. A spatial filter for reducing effects of aberration in a beam includes a reflector disposed upon a transparent base wherein the reflector has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the spatial intensity distribution of the beam focused upon the reflector.
Abstract:
An interferometer includes a beamsplitter for splitting a source beam into a test beam and a reference beam, an imaging device for detecting an interference pattern, a mirror disposed in a path of the test beam for reflection of the test beam toward the imaging device, a micromirror disposed in a path of the reference beam for reflection of a portion of the reference beam toward the imaging device, and a focusing mechanism disposed for focusing the reference beam on the micromirror. The micromirror has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the reference beam focused thereon by the focusing mechanism. A spatial filter for reducing effects of aberration in a beam includes a reflector disposed upon a transparent base wherein the reflector has a lateral dimension not exceeding the approximate lateral dimension of a central lobe of the spatial intensity distribution of the beam focused upon the reflector. A method of filtering a beam in a wavefront measurement system is also provided. This method includes focusing the beam, reflecting a particular first portion of the focused beam, and transmitting a second portion of the beam.In accordance with Office policy under M.P.E.P. Sec. 608.01(b), Applicant submits herewith as a part of the submitted Substitute Specification, a separate sheet with the subject Abstract as currently rewritten.
Abstract:
A measuring instrument with a parfocal combination of an ultra-violet to near-infrared (UV-NIR) spectrophotometer and a Fourier Transform Infrared (FTIR) spectrometer is disclosed. The parfocal configuration of metrology tools obviates lateral movement of the sample between two separate measurement instruments. Consequently, the area occupied by the parfocal measuring instrument is reduced. Moreover, throughput is increased because there is no need to reposition the sample to properly align the measurement area for the separate measurements. The measuring instrument also includes an imaging apparatus, such as a camera or microscope ocular, to accurately position the measurement area of the sample. Beam directing elements, such as a mirror and objective lenses, are mounted on a common movable member. The common movable member, which may be, e.g., a linear or rotating turret, moves to properly align the desired beam directing element, thereby selecting the specific metrology mode. In addition, the measurement instrument includes a purging shroud along the FTIR spectrometer optical path to efficiently purge any atmospherical gases that may interfere with the FTIR measurement technique.
Abstract:
A fluorescent in situ hybridization method comprising the steps of (a) providing a cell nuclei having chromosomes hybridized with at least one nucleic acid probe including at least one nucleic acid molecule labeled with at least one fluorophore; (b) viewing the cell nuclei through a fluorescence microscope optically connected to an imaging spectrometer for obtaining a spectrum of each pixel of the cell nuclei by (i) collecting incident collimated light simultaneously from all pixels of the cell nuclei; (ii) passing the incident collimated light through an interferometer system so that the light is first split into two coherent beams and then recombine to interfere and form an exiting light beam; (iii) focusing the exiting light beam on a detector having an array of detector elements, so that at each instant each of the elements is the image of one and always the same pixel for the entire duration of the measurement and so that each of the elements produces a signal which is a particular linear combination of light intensity emitted by the pixel at different wavelengths; (iv) rotating or translating one or more of the elements of the interferometer, so that the optical path difference is scanned simultaneously for all the pixels of the cell nuclei; and (v) recording signals of each of the detector elements as function of time using a recording device to form a first spectral cube of data; and (c) interpreting the first spectral cube of data using a mathematical algorithm.
Abstract:
An interferometer comprises a source of radiation (10) and a beam splitter (12) for forming two beams. The beams travel along different optical paths and the optical path difference of the paths can be varies by rotatable mirror pairs M2/M3 and M4/M5. One of the paths includes an adjustable mirror M6 which is tiltable in orthogonal directions. A control unit (18) can be automatically initiate periodically an alignment procedure for aligning the interferometer.