Abstract:
In some example embodiments, an infrared detector may comprise a substrate; a resonator spaced apart from the substrate, the resonator absorbing incident infrared light; a thermoelectric material layer contacting the resonator and having a variable resistance according to temperature variation due to the absorbed incident infrared light; a lead wire electrically connecting the thermoelectric material layer and the substrate; a heat separation layer between the substrate and the thermoelectric material layer, the heat separation layer preventing heat from being transferred from the thermoelectric material layer to the substrate; and/or a ground plane layer preventing the incident infrared light from proceeding toward the substrate. The heat separation layer may at least reduce heat transfer from the thermoelectric material layer to the substrate. The ground plane layer may at least reduce an amount of the incident infrared light that reaches the substrate.
Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
One embodiment provides an infrared imaging device, including: a substrate; connection wiring portions arranged in matrix form on the substrate; a first infrared detecting portion configured to convert intensity of absorbed infrared radiation into a first signal; and a second infrared detecting portion configured to convert intensity of absorbed infrared radiation into a second signal, the second infrared detecting portion being larger in thermal conductance than the first infrared detecting portion.
Abstract:
The bolometer-type THz wave detector according to the present invention has a thermal isolation structure in which a temperature detecting portion including a bolometer thin film connected to electrical wirings is supported in a state of being raised from the substrate by a supporting portion including the electrical wirings connected to a Read-out integrated circuit formed in a substrate, and the detector comprises a reflective film formed on the substrate, an absorbing film formed on the front surface or back surface or at an inner position in the temperature detecting portion , whereby an optical resonant structure is formed by the reflective film and the absorbing film, and a dielectric film formed on the reflective film. The dielectric film thickness f is set so that air gap between an upper surface of the dielectric film and a lower surface of the temperature detecting portion is smaller than 8 μm.
Abstract:
A device for detecting electromagnetic radiation that comprises an active bolometer provided with a first element sensitive to said electromagnetic radiation and a reference bolometer identical to the active bolometer, provided with a second element sensitive to said electromagnetic radiation. The active bolometer and reference bolometer are arranged close to one another on the same substrate. A cover covers at least the part of the second sensitive element exposed to the electromagnetic radiation and arranges an empty space between said second sensitive element and the cover. The inner wall of the cover is constituted by an absorbent layer made from a material absorbing at least the thermal radiations emitted by the second sensitive element. A reflecting shield forms at least a part of the outer wall exposed to said electromagnetic radiation.
Abstract:
A manufacturing method for an infrared sensor includes the following steps: providing a wafer having several chips and a substrate; forming four soldering portions, a thermistor, and an infrared sensing layer on the bottom surface of each chip, wherein the soldering portions are connected electrically to the thermistor and the infrared sensing layer; disposing a soldering material onto at least one bonding location for each soldering portion; backside-etching each chip of the wafer to form a sensing film and a surrounding wall around the sensing film; bonding the wafer and the substrate; heating the soldering materials to connect the substrate and each chip of the wafer; disposing an infrared filter on the surrounding wall of each chip; cutting the wafer and the substrate to form a plurality of individual infrared sensors. The instant disclosure further provides an associated infrared sensor.
Abstract:
The present invention relates to a method for forming a micro-surface structure on a substrate, in particular for producing a micro-electromechanical component, a micro-surface structure of this type, a method for producing a micro-electromechanical component having a micro-surface structure of this type and such a micro-electromechanical component. The invention is particularly relevant for components of microsystem technology (MST, micro-electromechanical systems MEMS) and the construction and connection technology for hermetically housing micro components, preferably using getter materials.
Abstract:
A method for installing a sorption element in a cavity including: disposing, within the cavity, a getter material, a reaction material, and a protective material, the protective material covering at least one part of the getter material so as to bury the at least one part; raising a temperature up to at least one removal temperature; and moving the protective material towards the reaction material by reaction between the protective material and the reaction material so that at least one portion of the part of the getter material is no longer covered with the protective material.
Abstract:
An NDIR gas sensor is housed within a mechanical housing made up of a can and a header housing. The header housing body contains a tunnel waveguide sample chamber. The header housing also has a top surface with a pair of windows formed in it and a signal detector, a reference detector, a MEMS source and a signal processor mounted to it. The can has inner reflective surfaces and the reference detector and the signal detector are affixed to the top surface so that the inner reflective surfaces of the can and the tunnel waveguide sample chamber create a signal channel path length detected by the signal detector that is greater than a reference channel path length detected by the reference detector and an absorption bias between the signal and reference outputs can be used to determine a gas concentration in the sample chamber. Both the signal detector and the reference detector have an identical narrow band pass filter with the same Center Wavelength (“CWL”), Full Width Half Maximum (FWHM) and transmittance efficiency at the CWL.
Abstract:
A thermal sensor that includes a ceramic body formed of NTC thermister ceramic, heat sensing part electrodes, temperature compensation part electrodes, external electrodes, and a cavity. A heat sensing part, which is the surface layer of the ceramic body, is heated by, for example, radiant heat transfer, reducing the resistance value of a thermistor ceramic layer between the heat sensing part electrodes. Since the heat of the heat sensing part of the ceramic body is insulated by the cavity and thus prevented from diffusing, the heat capacity of the heat sensing unit is reduced, obtaining high sensitivity and high responsiveness.